Abou-Elela, H., Ibrahim, A., Mahmoud, O., & Abdel-Hamid, O. (2013, 28-30 May).
Ballistic Analysis of a Projectile Provided with Base Bleed Unit. 15th International Conference on Aerospace Science and Aviation Technology. Cairo, Egypt.
https://doi.org/10.21608/asat.2013.22270
Aziz, M., Ibrahim, A., Riad, A., & Ahmed, Y. (2022). Live firing and 3D numerical investigation of base bleed exit configuration impact on projectile drag.
Advances in Military Technology, 17(1), 137-152.
https://doi.org/10.3849/aimt.01529
Belaidouni, H., Živković, S., & Samardžić, M. (2016). Numerical simulations in obtaining drag reduction for projectile with base bleed.
Scientific Technical Review, 66(2), 36-42.
https://doi.org/10.5937/STR1602036B
Carlucci, D., & Jacobson, S. (2008). Ballistics: theory and design of guns and ammunition. 496p. Florida, United States. CRC Press. ISBN: 978-1-4200-6618-0
Chang, S., & Li, D. (2023). Aerodynamic coefficients of a microspoiler for spin-stabilized projectiles.
Journal of Spacecraft and Rockets, 60(3).
https://doi.org/10.2514/1.A35566
Courant, R., Friedrichs, K., & Lewy, H. (1967). On the partial difference equations of mathematical physics.
IBM Journal of Research and Development, 11(2), 215–234.
https://doi.org/10.1147/rd.112.0215
Decrocq, C., Martinez, B., Albisser, M., Dobre, S., Gnemmi, P., Bailly, Y., & Roy, J. (2018). Aerodynamic prediction of a projectile fitted with fins.
International Journal of Numerical Methods for Heat and Fluid Flow, 28(5), 1218-1236.
https://doi.org/10.1108/HFF-06-2017-0259
DeSpirito, J. (2008, 18 - 21 August).
Effects of base shape on spin-stabilized projectile aerodynamics. 26th AIAA Applied Aerodynamics Conference. Hawaii, USA.
https://doi.org/10.2514/6.2008-6738
DeSpirito, J. (2017, 5-9 June).
CFD aerodynamic characterization of 155-mm projectile at high angles-of-attack. 35th AIAA Applied Aerodynamics Conference. Colorado, USA.
https://doi.org/10.2514/6.2017-3397
DeSpirito, J., & Heavey, K. (2004, 16-19 August).
CFD Computation of Magnus Moment and Roll Damping Moment of a Spinning Projectile. AIAA Atmospheric Flight Mechanics Conference and Exhibit. Rhode Island, USA.
https://doi.org/10.2514/6.2004-4713
Ferfouri, A., Allouche, T., Jerković, D., Hristov, N., Vučković, M., & Benmeddah, A. (2023). Prediction of drag aerodynamic coefficient of the 155mm projectile under axisymmetric flow using different approaches.
Journal of the Serbian Society for Computational Mechanics, 17(2), 69-86.
https://doi.org/10.24874/jsscm.2023.17.02.06
Guilmineau, E., Visonneau, M., & Rubino, G. (2020, 25-28 February).
Evaluation of turbulence models for the prediction of vortex interaction over a fighter aircraft. Aerospace Europe Conference. Bordeaux, France.
https://hal.science/hal-03027410v1
Hao, B., Jiang, Q., Xu, C., & Liu, L. (2024). Aerodynamic characterization of bullet heads with different arcuate curves .
Journal of Applied Fluid Mechanics, 17(5), 1015-1026.
https://doi.org/10.47176/jafm.17.05.2333
Ibrahim, A., & Filippone, A. (2007a). Effect of streamwise slots on the drag of a transonic projectile.
Journal of Aircraft, 44(6), 1865-1875.
https://doi.org/10.2514/1.30439
Ibrahim, A., & Filippone, A. (2007b). Effect of porosity strength on drag reduction of a transonic projectile.
Journal of Aircraft, 44(1), 310-316.
https://doi.org/10.2514/1.23613
ICAO. (1993). Manual of the ICAO standard atmosphere extended to 80 kilometres (262 500 feet). International Civil Aviation Organization, Doc 7488/3
Jiajan, W., Chue, R. S., Nguyen, T., & Yu, S. (2013). Optimisation of round bodies for aerodynamic performance and stability at supersonic speeds.
Aeronautical Journal, 177(1193), 661-685.
https://doi.org/10.1017/S0001924000008368
Jiajan, W., Chue, R., Nguyen, T., Pey, Y., & Yu, S. (2015b). Aerodynamic characteristics of high performance rounds at Mach 1.8 to 4.
Aerospace Science and Technology, 40, 62-74.
https://doi.org/10.1016/j.ast.2014.10.013
Ko, A., Chang, K., Sheen, D., Lee, C., Park, Y., & Park, S. (2020). Prediction and analysis of the aerodynamic characteristics of a spinning projectile based on computational fluid dynamics.
International Journal of Aerospace Engineering.
https://doi.org/10.1155/2020/6043721
Li, T., Qin, D., & Zhang, J. (2019). Effect of RANS Turbulence model on aerodynamic behavior of trains in crosswind.
Chinese Journal of Mechanical Engineering, 32(1).
https://doi.org/10.1186/s10033-019-0402-2
Lutton, M. J. (1989). Comparison of C-and O-grid generation methods using a NACA 0012 airfoil [Doctoral dissertation, Air Force Institute of Technology].
Ma, J., Chen, Z., Xue, D., Sun, X., & Liu, R. (2021). Flow separation control for a supersonic spinning projectile by using a microvortex generator jet.
Journal of Applied Mechanics and Technical Physics, 62(2), 266-272.
https://doi.org/10.1134/S0021894421020103
Ma, J., Chen, Z.-h., Huang, Z.-g., Gao, J.-g., & Zhao, Q. (2016). Investigation on the flow control of micro-vanes on a supersonic spinning projectile.
Defence Technology, 12(3), 227-233.
https://doi.org/10.1016/j.dt.2016.01.008
McCoy, R. L. (1998). Modern exterior ballistics. 328p. Schiffir Publishing Ltd, ISBN: 978-0-7643-3825-0
Menter, F. (1994). Two-Equation Eddy-Viscosity Turbulence Models for engineering applications.
AIAA Journal, 32(8), 1598–1650.
https://doi.org/10.2514/3.12149
Mulvany, N., Chen, L., Tu, J., & Anderson, B. (2004).
Steady-state evaluation of 'two-equation' RANS (Reynolds-averaged Navier-Stokes) turbulence models for high-Reynolds number hydrodynamic flow simulations. DSTO Platform Sciences Laboratory, DSTO-TR-1564.
https://apps.dtic.mil/sti/tr/pdf/ADA426359.pdf
Nicolás-Pérez, F., Velasco, F., García-Cascales, J., Otón-Martínez, R., López-Belchí, A., Moratilla, D., Rey, F., Laso, A. (2017). On the accuracy of RANS, DES and LES turbulence models for predicting drag reduction with base bleed technology.
Aerospace Science and Technology, 67, 126-140.
https://doi.org/10.1016/j.ast.2017.03.031
Onn, S., Su, A., Wei, C., & Sun, C. (2001). Computational drag and magnus force reduction for a transonic spinning projectile using passive porosity.
Computer Methods in Applied Mechanics and Engineering, 190(46-47), 6125-6139.
https://doi.org/10.1016/S0045-7825(01)00210-9
Paul, S., Vinoth Raj, A., & Senthil Kumar, C. (2023). Inward turning base-bleed technique for base drag reduction.
The Aeronautical Journal, 127, 370–397.
https://doi.org/10.1017/aer.2022.65
Qiu, N., Li, M., Wu, J., Zhu, H., & Xu , P. (2024). Numerical investigation of vortex generator on controlling flow field of centrifugal pump based on response surface method.
Journal of Applied Fluid Mechanics, 17(8), 1774-1791.
https://doi.org/10.47176/jafm.17.8.2293
Regodić, D., Jevremovic, A., & Jerković, D. (2013). The prediction of axial aerodynamic coefficient reduction using base bleed.
Aerospace Science and Technology, 31(1), 24-29.
https://doi.org/10.1016/j.ast.2013.09.001
Roy, A. (2012). A first course on aerodynamics. 95p. Ventus Publishing ApS, ISBN: 978-87-7681-926-2.
Sahoo, S., & Laha, M. (2014). Coefficient of drag and trajectory simulation of 130 mm supersonic artillery shell with recovery plug or fuze.
Defence Science Journal, 64(6), 502–508.
https://doi.org/10.14429/dsj.64.8110
Shih, T. H., Liou, W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-ϵ eddy viscosity model for high reynolds number turbulent flows.
Computers & Fluids, 24(3), 227-238.
https://doi.org/10.1016/0045-7930(94)00032-T
Silton, S. (2005). Navier–Stokes computations for a spinning projectile from subsonic to supersonic speeds.
Journal of Spacecraft and Rockets, 42(2), 223-231.
https://doi.org/10.2514/1.4175
Silton, S. (2011, 27 - 30 June).
Navier-Stokes predictions of aerodynamic coefficients and dynamic derivatives of a 0.50-cal projectile. 29th AIAA Applied Aerodynamics Conference. Hawaii, USA.
https://doi.org/10.2514/6.2011-3030
Thomas, B., & Agarwal, R. (2019). Evaluation of various rans turbulence models for predicting the drag on an ahmed body.
AIAA AVIATION Forum. Dallas, USA.
https://doi.org/10.2514/6.2019-2919
Wang, M., & Zhuo, C. (2021). Numerical research on effect of base bleed type on operation process of base bleed projectile.
Journal of Applied Fluid Mechanics, 14(5), 1583-1591.
https://doi.org/10.47176/jafm.14.05.32343
Wessam, M., & Chen, Z. (2015, January).
Flow field investigations and aerodynamic characteristics of artillery projectile. International Conference of Electrical, Automation and Mechanical Engineering.
https://doi.org/10.2991/eame-15.2015.73