Brujan, E. A., & Vogel, A. (2006). Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom.
Journal of Fluid Mechanics, 558, 281–308.
https://doi.org/10.1017/S0022112006000115.
Chen, N., Yan, B., Li, Z. J., Li, L., & He, N. (2020). Research on laser etching of CVD diamond based on Gaussian pulse.
China Laser, 47(12), 127-134.
http://doi.org/10.3788/CJL202047.1202007.
Chen, X., Bian, B. M., Shen, Z. H., Lu, J., & Ni, X. W. (2003). Equations of laser-induced plasma shock wave motion in air.
Microwave and Optical Technology Letters,
38(1), 75–79.
https://doi.org/10.1002/mop.10975.
Fortes-Patella, R., Challier, G., Reboud, J. L., & Archer, A. (2013). Energy balance in cavitation erosion: From bubble collapse to indentation of material surface.
Journal of Fluids Engineering, 135(1), 011303.
https://doi.org/10.1115/1.4023076.
Fujikawa, S., & Akamatsu, T. (1980). Effects of the non-equilibrium condensation of vapor on the pressure wave produced by the collapse of a bubble in a liquid.
Journal of Fluid Mechanics, 97(3), 481–512.
http://doi.org/10.1017/S0022112080002662.
Goncalves da Silva, E., & Parnaudeau, P. (2021). Numerical study of pressure loads generated by a shock-induced bubble collapse. Physics of Fluids, 33(11), 1070-6631. https://doi.org/10.1063/5.0069332
Huang, G., Zhang, M., Ma, X., Chang, Q., Zheng, C., & Huang, B. (2020). Dynamic behavior of a single bubble between the free surface and rigid wall.
Ultrasonics Sonochemistry, 67, 105147.
https://doi.org/10.1016/j.ultsonch.2020.105147.
Huang, Y., Dai S. S., & Yuan, Z. M. (2024). Rapid validation of water wave metamaterials in a desktop-scale wave measurement system. International Journal of Fluid Engineering, 1(1), 013501. https://doi.org/10.1063/5.0191033.
Lechner, C., Koch, M., Lauterborn, W., & Mettin, R. (2017). Pressure and tension waves from bubble collapse near a solid boundary: A numerical approach.
Journal of the Acoustical Society of America, 142, 3649–3659.
https://doi.org/10.1121/1.5017619.
Luo, J., Xu, W.L., Deng, J., Zhai, Y., & Zhang, Q. (2018). Experimental study on the impact characteristics of cavitation bubble collapse on a wall.
Water, 10(9), 1262.
https://doi.org/10.3390/w10091262.
Ma, X., Huang, B., Zhao, X., Wang, Y., Chang, Q., Qiu, S., Fu, X., & Wang, G. (2018). Comparisons of spark-charge bubble dynamics near the elastic and rigid boundaries.
Ultrasonics Sonochemistry, 43, 80–90.
https://doi.org/10.1016/j.ultsonch.2018.01.005.
Matula, T. J., Hallaj, I. M., Cleveland, R. O., Crum, L. A., Moss, W. C., & Roy, R. A. (1998). The acoustic emissions from single-bubble sonoluminescence.
The Journal of the Acoustical Society of America, 103, 1377–1382.
https://doi.org/10.1121/1.421279.
Ohl, C. D., Kurz, T., Geisler, R., Lindau, O., & Lauterborn W. (1999). Bubble dynamics, shock waves and sonoluminescence.
Philosophical Transactions of the Royal Society A, 357(1751), 269–294.
https://doi.org/10.1098/rsta.1999.0327.
Rayleigh, J. W. S. (1917). VIII. On the pressure developed in a liquid during the collapse of a spherical cavity.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(200), 94.
https://doi.org/10.1080/14786440808635681.
Supponen, O., Obreschkow, D., Kobel, P., Tinguely, M., Dorsaz, N., & Farhat, M. (2017). Shock waves from nonspherical cavitation bubbles.
Physical Review Fluids, 2, 093601.
https://doi.org/10.1103/PhysRevFluids.2.093601.
Teslenko, V. S., (1980) Experimental investigation of bubble collapse at laser-induced breakdown in liquids. In: W. Lauterborn (eds.),
cavitation and inhomogeneities in underwater acoustics. Springer Series in Electrophysics, vol 4. Springer, Berlin, Heidelberg.
, 4, 3–34.
https://doi.org/10.1007/978-3-642-51070-0_4.
Trummler, T., Steffen J. S., & Nikolaus A. A. (2021). Effect of stand-off distance and spatial resolution on the pressure impact of near-wall vapor bubble collapses.
International Journal of Multiphase Flow, 141, 0301-9322.
https://doi.org/10.1016/j.ijmultiphaseflow.2021.103618.
Vogel, A., Lauterborn, W., & Timm, R. (1989). Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary.
Journal of Fluid Mechanics, 206, 299–338.
https://doi.org/10.1017/s0022112089002314.
Yu, J. X., Luo, J. X., Li, Y. M. (2024). A review of bubble collapsing near particles. International Journal of Fluid Engineering, 1(2), 020601. https://doi.org/10.1063/5.0193451.
Zhang, A. M., Wang, S. P., Bai, Z. H., & Huang, C. (2011). Experimental study on bubble pulse features under different circumstances.
Chinese Journal of Theoretical and Applied Mechanics, 43(1), 71–83. http://doi.org/
10.6052/0459-1879-2011-1-lxxb2010-278.
Zhang, G., & Zhang, H. T. (2024). Experimental studies of cavitation evolution through a butterfly valve at diferent regulation conditions. Experiments in Fluids, 65(4). https://doi.org/10.1007/s00348-023-03743-3.
Zhang, H. T., Wu, X., Lin, Z., & Zhang, G. (2024). Experimental study on cavitation inhibition in a butterfly valve with different plate shapes.
Physics of Fluids, 36, 023363.
https://doi.org/10.1063/5.0187768.
Zhang, M., Chang, Q., Ma, X., Wang, G., & Huang, B. (2019). Physical investigation of the counterjet dynamics during the bubble rebound.
Ultrasonics Sonochemistry,
58, 104706.
https://doi.org/10.1016/j.ultsonch.2019.104706.
Zhang, S., Wang, S. P., & Zhang, A. M. (2016). Experimental study on the interaction between bubble and free surface using a high-voltage spark generator.
Physics of Fluids, 28, 032109.
https://doi.org/10.1063/1.4944349.
Zhu, H. J., Wang, Q., Mei, X. H., Wu, Y., & Zhao, C. (2022). A review on flow field velocimetry based on high-speed schlieren/shadowgraph systems.
Journal of Experiments in Fluid Mechanics, 36(2), 49–73. https://doi.org/
10.11729/syltlx20210110.