Abadeh, A., Davoodabadi Farahani, S., Mohammadzadeh, K., & Ghanbari, D. (2023). An experimental study on ferrofluid flow and heat transfer in a micro-fin straight circular tube.
Journal of Thermal Analysis and Calorimetry,
148(16), 8375–8386.
https://doi.org/10.1007/s10973-023-12024-4
Ahmad Khan, S., & Altamush Siddiqui, M. (2020). Numerical studies on heat and fluid flow of nanofluid in a partially heated vertical annulus.
Heat Transfer - Asian Research,
December 2019.
https://doi.org/10.1002/htj.21672
Akbar, N. S., Raza, M., & Ellahi, R. (2016). Copper oxide nanoparticles analysis with water as base fluid for peristaltic flow in permeable tube with heat transfer.
Computer Methods and Programs in Biomedicine,
130, 22–30.
https://doi.org/10.1016/j.cmpb.2016.03.003
Akbari, O. A., Toghraie, D., & Karimipour, A. (2015). Impact of ribs on flow parameters and laminar heat transfer of water-aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel.
Advances in Mechanical Engineering,
7(11).
https://doi.org/10.1177/1687814015618155
Akbari, O. A., Toghraie, D., Karimipour, A., Marzban, A., & Ahmadi, G. R. (2017). The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid.
Physica E: Low-Dimensional Systems and Nanostructures,
86, 68–75.
https://doi.org/10.1016/j.physe.2016.10.013
Al-Kouz, W., Abderrahmane, A., Shamshuddin, MD., Younis, O., Mohammed, S., Bég, O. A., & Toghraie, D. (2021). Heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid magnetic nanofluid flow in a trapezoidal wavy enclosure containing porous media with the Galerkin finite element method.
The European Physical Journal Plus,
136(11), 1184.
https://doi.org/10.1140/epjp/s13360-021-02192-3
Azmi, W. H., Sharma, K. V., Mamat, R., Alias, A. B. S., & Izwan Misnon, I. (2012).
Correlations for thermal conductivity and viscosity of water based nanofluids. IOP Conference Series: Materials Science and Engineering.
https://doi.org/10.1088/1757-899X/36/1/012029
Bahiraei, M., & Alighardashi, M. (2016). Investigating non-Newtonian nanofluid flow in a narrow annulus based on second law of thermodynamics.
Journal of Molecular Liquids,
219, 117–127.
https://doi.org/10.1016/j.molliq.2016.03.007
Beheshti, A., Moraveji, M. K., & Hejazian, M. (2015). Comparative numerical study of nanofluid heat transfer through an annular channel.
Numerical Heat Transfer; Part A: Applications,
67(1), 100–117.
https://doi.org/10.1080/10407782.2014.894359
Behroyan, I., Vanaki, S. M., Ganesan, P., & Saidur, R. (2016). A comprehensive comparison of various CFD models for convective heat transfer of Al2O3 nanofluid inside a heated tube.
International Communications in Heat and Mass Transfer,
70, 27–37.
https://doi.org/10.1016/j.icheatmasstransfer.2015.11.001
Benkhedda, M., Boufendi, T., & Touahri, S. (2018). Laminar mixed convective heat transfer enhancement by using Ag-TiO2-water hybrid Nanofluid in a heated horizontal annulus.
Heat and Mass Transfer/Waerme- Und Stoffuebertragung,
54(9), 2799–2814.
https://doi.org/10.1007/s00231-018-2302-x
Bianco, V., Manca, O., & Nardini, S. (2010). Numerical simulation of water/ Al2O3 nanofluid turbulent convection.
Advances in Mechanical Engineering,
2010.
https://doi.org/10.1155/2010/976254
Bozorg, M. V., Hossein Doranehgard, M., Hong, K., & Xiong, Q. (2020). CFD study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oil–Al2O3 nanofluid.
Renewable Energy,
145, 2598–2614.
https://doi.org/10.1016/j.renene.2019.08.042
Chon, C. H., Kihm, K. D., Lee, S. P., & Choi, S. U. S. (2005a). Empirical correlation finding the role of temperature and particle size for nanofluid (Al 2O 3) thermal conductivity enhancement.
Applied Physics Letters,
87(15), 1–3.
https://doi.org/10.1063/1.2093936
Chon, C. H., Kihm, K. D., Lee, S. P., & Choi, S. U. S. (2005b). Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement.
Applied Physics Letters,
87(15).
https://doi.org/10.1063/1.2093936
Corcione, M. (2011). Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids.
Energy Conversion and Management,
52(1), 789–793.
https://doi.org/10.1016/j.enconman.2010.06.072
Davoudi, A., Daneshmand, S., Monfared, V., & Mohammadzadeh, K. (2021). Numerical simulation on heat transfer of nanofluid in conical spiral heat exchanger.
Progress in Computational Fluid Dynamics,
21(1), 52–63.
https://doi.org/10.1504/PCFD.2021.112620
Dawood, H. K., Mohammed, H. A., & Munisamy, K. M. (2014). Heat transfer augmentation using nanofluids in an elliptic annulus with constant heat flux boundary condition.
Case Studies in Thermal Engineering,
4, 32–41.
https://doi.org/10.1016/j.csite.2014.06.001
Dawood, H. K., Mohammed, H. A., Sidik, N. A. C., Munisamy, K. M., & Alawi, O. A. (2017). Heat transfer augmentation in concentric elliptic annular by ethylene glycol based nanofluids.
International Communications in Heat and Mass Transfer,
82, 29–39.
https://doi.org/10.1016/j.icheatmasstransfer.2017.02.008
Hassan, M., Marin, M., Ellahi, R., & Alamri, S. Z. (2018b). Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/water hybrid-nanofluids. Heat Transfer Research, 49(18), 1837–1848.
He, Y., Men, Y., Liu, X., Lu, H., Chen, H., & Ding, Y. (2009). Study on forced convective heat transfer of non-newtonian nanofluids.
Journal of Thermal Science,
18(1), 20–26.
https://doi.org/10.1007/s11630-009-0020-x
Heidarshenas, A., Azizi, Z., Peyghambarzadeh, S. M., & Sayyahi, S. (2020). Experimental investigation of the particle size effect on heat transfer coefficient of Al2O3 nanofluid in a cylindrical microchannel heat sink.
Journal of Thermal Analysis and Calorimetry,
141(2), 957–967.
https://doi.org/10.1007/s10973-019-09033-7
Hojjat, M., Etemad, S. G., Bagheri, R., & Thibault, J. (2011a). Convective heat transfer of non-Newtonian nanofluids through a uniformly heated circular tube.
International Journal of Thermal Sciences,
50(4), 525–531.
https://doi.org/10.1016/j.ijthermalsci.2010.11.006
Hojjat, M., Etemad, S. G., Bagheri, R., & Thibault, J. (2011b). Laminar convective heat transfer of non-Newtonian nanofluids with constant wall temperature.
Heat and Mass Transfer/Waerme- Und Stoffuebertragung,
47(2), 203–209.
https://doi.org/10.1007/s00231-010-0710-7
Jafarimoghaddam, A., Aberoumand, S., Aberoumand, H., & Javaherdeh, K. (2017). Experimental study on Cu/Oil nanofluids through concentric annular tube: A correlation.
Heat Transfer - Asian Research,
46(3), 251–260.
https://doi.org/10.1002/htj.21210
Javadpour, A., Najafi, M., & Javaherdeh, K. (2017a). Experimental study of steady state laminar forced heat transfer of horizontal annulus tube with non-Newtonian nanofluid.
Journal of Mechanical Science and Technology,
31(11), 5539–5544.
https://doi.org/10.1007/s12206-017-1048-6
Javadpour, A., Najafi, M., & Javaherdeh, K. (2017b). Experimental study of steady state laminar forced heat transfer of horizontal annulus tube with non-Newtonian nanofluid.
Journal of Mechanical Science and Technology,
31(11), 5539–5544.
https://doi.org/10.1007/s12206-017-1048-6
Javadpour, A., Najafi, M., & Javaherdeh, K. (2018). Effect of magnetic field on forced convection heat transfer of a non-Newtonian nanofluid through an annulus: an experimental study.
Heat and Mass Transfer/Waerme- Und Stoffuebertragung,
54(11), 3307–3316.
https://doi.org/10.1007/s00231-018-2361-z
Koca, H. D., Doganay, S., Turgut, A., Tavman, I. H., Saidur, R., & Mahbubul, I. M. (2018). Effect of particle size on the viscosity of nanofluids: A review.
Renewable and Sustainable Energy Reviews,
82, 1664-1674.
https://doi.org/10.1016/j.rser.2017.07.016
Majid, S., & Mohammad, J. (2017a). Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow.
Journal of Central South University,
24(8), 1850–1865.
https://doi.org/10.1007/s11771-017-3593-7
Majid, S., & Mohammad, J. (2017b). Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow.
Journal of Central South University,
24(8), 1850–1865.
https://doi.org/10.1007/s11771-017-3593-7
Marin, M., Hobiny, A., & Abbas, I. (2021). Finite element analysis of nonlinear bioheat model in skin tissue due to external thermal sources.
Mathematics,
9(13), 1459.
https://doi.org/10.3390/math9131459
Mirzaei, M., & Azimi, A. (2016). Heat transfer and pressure drop characteristics of graphene oxide/water nanofluid in a circular tube fitted with wire coil insert.
Experimental Heat Transfer,
29(2), 173–187.
https://doi.org/10.1080/08916152.2014.973975
Moghadassi, A. R., Masoud Hosseini, S., Henneke, D., & Elkamel, A. (2009). A model of nanofluids effective thermal conductivity based on dimensionless groups.
Journal of Thermal Analysis and Calorimetry,
96(1), 81–84.
https://doi.org/10.1007/s10973-008-9843-z
Moghari, R. M., Mujumdar, A. S., Shariat, M., F. Talebi, Sajjadi, S. M., & Akbarinia, A. (2013). Investigation effect of nanoparticle mean diameter on mixed convection Al2O3-water nanofluid flow in an annulus by two phase mixture model.
International Communications in Heat and Mass Transfer,
49, 25–35.
https://doi.org/10.1016/j.icheatmasstransfer.2013.08.017
Mohammadzadeh, K., Khaleghi, H., Khadem Abolfazli, H. R., & Seddiq, M. (2018). Effects of gas cross-over through the membrane on water management in the cathode and anode sides of PEM fuel cell.
Journal of Applied Fluid Mechanics,
11(4), 861–875.
https://doi.org/10.29252/jafm.11.04.28559
Mojarrad, M. S., Keshavarz, A., Ziabasharhagh, M., & Raznahan, M. M. (2014). Experimental investigation on heat transfer enhancement of alumina/water and alumina/water-ethylene glycol nanofluids in thermally developing laminar flow.
Experimental Thermal and Fluid Science,
53, 111–118.
https://doi.org/10.1016/j.expthermflusci.2013.11.015
Mokhtari Moghari, R., Akbarinia, A., Shariat, M., Talebi, F., & Laur, R. (2011a). Two phase mixed convection Al2O3-water nanofluid flow in an annulus.
International Journal of Multiphase Flow,
37(6), 585–595.
https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.008
Mokhtari Moghari, R., Akbarinia, A., Shariat, M., Talebi, F., & Laur, R. (2011b). Two phase mixed convection Al2O3-water nanofluid flow in an annulus.
International Journal of Multiphase Flow,
37(6), 585–595.
https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.008
Moraveji, M. K., Haddad, S. M. H., & Darabi, M. (2012). Modeling of forced convective heat transfer of a non-Newtonian nanofluid in the horizontal tube under constant heat flux with computational fluid dynamics.
International Communications in Heat and Mass Transfer,
39(7), 995–999.
https://doi.org/10.1016/j.icheatmasstransfer.2012.05.003
Naderi, B., & Mohammadzadeh, K. (2020). Numerical unsteady simulation of nanofluid flow over a heated angular oscillating circular cylinder.
Journal of Thermal Analysis and Calorimetry,
139(1), 721–739.
https://doi.org/10.1007/s10973-019-08349-8
Othman, M. I. A., Said, S., & Marin, M. (2019). A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase-lag model.
International Journal of Numerical Methods for Heat & Fluid Flow,
29(12), 4788–4806.
https://doi.org/10.1108/HFF-04-2019-0359
Popa, C. V., Nguyen, C. T., & Gherasim, I. (2017). New specific heat data for Al2O3 and CuO nanoparticles in suspension in water and Ethylene Glycol.
International Journal of Thermal Sciences,
111, 108–115.
https://doi.org/10.1016/j.ijthermalsci.2016.08.016
Rabby, M. I. I., Hasan, M. E., Amin, A. al, & Islam, A. K. M. S. (2019, July).
Laminar convective heat transfer in developing region of a pipe by using nanofluids. AIP Conference Proceedings, 2121.
https://doi.org/10.1063/1.5115921
Rabienataj Darzi, A. A., Farhadi, M., & Lavasani, A. M. (2016). Two phase mixture model of nano-enhanced mixed convection heat transfer in finned enclosure.
Chemical Engineering Research and Design,
111, 294–304.
https://doi.org/10.1016/j.cherd.2016.05.019
Rahimi Gheynani, A., Ali Akbari, O., Zarringhalam, M., Ahmadi Sheikh Shabani, G., Alnaqi, A. A., Goodarzi, M., & Toghraie, D. (2019). Investigating the effect of nanoparticles diameter on turbulent flow and heat transfer properties of non-Newtonian carboxymethyl cellulose/CuO fluid in a microtube.
International Journal of Numerical Methods for Heat & Fluid Flow,
29(5), 1699–1723.
https://doi.org/10.1108/HFF-07-2018-0368
Rea, U., McKrell, T., Hu, L. wen, & Buongiorno, J. (2009). Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids.
International Journal of Heat and Mass Transfer,
52(7–8), 2042–2048.
https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.025
Sajadifar, S. A., Karimipour, A., & Toghraie, D. (2017). Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions.
European Journal of Mechanics, B/Fluids,
61, 25–32.
https://doi.org/10.1016/j.euromechflu.2016.09.014
Sepehrnia, M., Mohammadzadeh, K., Veyseh, M. M., Agah, E., & Amani, M. (2022a). Rheological behavior of engine oil based hybrid nanofluid containing MWCNTs and ZnO nanopowders: Experimental analysis, developing a novel correlation, and neural network modeling.
Powder Technology,
404, 117492.
https://doi.org/10.1016/j.powtec.2022.117492
Sepehrnia, M., Mohammadzadeh, K., Veyseh, M. M., Agah, E., & Amani, M. (2022b). Rheological behavior of engine oil based hybrid nanofluid containing MWCNTs and ZnO nanopowders: Experimental analysis, developing a novel correlation, and neural network modeling.
Powder Technology,
404, 117492.
https://doi.org/10.1016/j.powtec.2022.117492
Shahsavar, A., Moradi, M., & Bahiraei, M. (2018). Heat transfer and entropy generation optimization for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a concentric annulus.
Journal of the Taiwan Institute of Chemical Engineers,
84, 28–40.
https://doi.org/10.1016/j.jtice.2017.12.029
Shojaeian, M., Karimzadehkhouei, M., & Koşar, A. (2017). Experimental investigation on convective heat transfer of non-Newtonian flows of Xanthan gum solutions in microtubes.
Experimental Thermal and Fluid Science,
85, 305–312.
https://doi.org/10.1016/j.expthermflusci.2017.02.025
Siavashi, M., & Jamali, M. (2016a). Heat transfer and entropy generation analysis of turbulent flow of TiO 2 -water nanofluid inside annuli with different radius ratios using two-phase mixture model.
Applied Thermal Engineering,
100, 1149–1160.
https://doi.org/10.1016/j.applthermaleng.2016.02.093
Siavashi, M., & Jamali, M. (2016b). Heat transfer and entropy generation analysis of turbulent flow of TiO2-water nanofluid inside annuli with different radius ratios using two-phase mixture model.
Applied Thermal Engineering,
100, 1149–1160.
https://doi.org/10.1016/j.applthermaleng.2016.02.093
Siavashi, M., & Rostami, A. (2017a). Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media.
International Journal of Mechanical Sciences,
133(July), 689–703.
https://doi.org/10.1016/j.ijmecsci.2017.09.031
Siavashi, M., & Rostami, A. (2017b). Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media.
International Journal of Mechanical Sciences,
133, 689–703.
https://doi.org/10.1016/j.ijmecsci.2017.09.031
Siavashi, M., Bahrami, H. R. T., & Saffari, H. (2017a). Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model.
Numerical Heat Transfer; Part A: Applications,
71(12), 1251–1273.
https://doi.org/10.1080/10407782.2017.1345270
Siavashi, M., Bahrami, H. R. T., & Saffari, H. (2017b). Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model.
Numerical Heat Transfer, Part A: Applications,
71(12), 1251–1273.
https://doi.org/10.1080/10407782.2017.1345270
Vlase, S., Stac, C. N., & Marin, M. (2017). A method for the study of the vibration of mechanical bars systems with symmetries. Acta Technica Napocensis Series, 60(4), 539–544.
Yarmohammadi, S., Mohammadzadeh, K., Farhadi, M., Hajimiri, H., & Modir, A. (2020). Multi-objective optimization of thermal and flow characteristics of R-404A evaporation through corrugated tubes.
Journal of Energy Storage,
27(August 2019), 101137.
https://doi.org/10.1016/j.est.2019.101137
Zarringhalam, M., Karimipour, A., & Toghraie, D. (2016). Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–Water nanofluid.
Experimental Thermal and Fluid Science,
76, 342–351.
https://doi.org/10.1016/j.expthermflusci.2016.03.026
Zeinali Heris, S., Nasr Esfahany, M., & Etemad, S. G. (2007a). Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube.
International Journal of Heat and Fluid Flow,
28(2), 203–210.
https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001
Zeinali Heris, S., Nasr Esfahany, M., & Etemad, S. G. (2007b). Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube.
International Journal of Heat and Fluid Flow,
28(2), 203–210.
https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001
Zeinali Heris, S., Nasr Esfahany, M., & Etemad, S. Gh. (2007c). Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube.
International Journal of Heat and Fluid Flow,
28(2), 203–210.
https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001