Thermal Behavior of Carboxymethyl Cellulose Containing Alumina Nanoparticles at the Entrance Region of an Annulus

Document Type : Regular Article

Authors

1 Department of Mechanical Engineering, Yasouj University, Yasouj, Iran

2 Department of Mechanical Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran

3 Department of Biomedical Engineering, Islamic Azad University Shahreza Branch, Shahreza, Iran

4 Department of Mechanical Engineering, Arak University of Technology, Arak, Iran

10.47176/jafm.18.3.2949

Abstract

This paper investigates the thermal behavior of non-Newtonian nanofluids, specifically carboxymethyl cellulose (CMC) 0.5% and Al₂O₃ nanoparticles, in the fully developed region of a horizontal annulus. A three-dimensional axisymmetric, steady-state numerical solution is performed using the mixture multiphase model to compare with the results obtained from the single-phase model. The present study examines the effects of nanoparticle volume fraction ranging from 0.5% to 1.5% and particle diameters of 25 nm and 50 nm for various Reynolds numbers (Re) within the laminar flow regime. The results indicate that while the temperature profile distribution is slightly affected by changes in alumina concentration, significant variations are observed in the entrance region. Specifically, as Re is enhanced, the Nusselt number (Nu) is increased. For an outer wall heat flux of 1000 W/m² and a 1% concentration, Nu at the x/L = 0.25 section augments from 6.92 to approximately 13.14 as Re is enhanced from 5 to 500. Additionally, for the same conditions, Nu is about 0.78% higher for Al₂O₃ nanoparticles with a diameter of 25 nm than the ones with a diameter of 50 nm. In all cases, there is an acceptable agreement between the results obtained from the mixture and the single-phase models, with discrepancies of less than 1.13%.

Keywords

Main Subjects


Abadeh, A., Davoodabadi Farahani, S., Mohammadzadeh, K., & Ghanbari, D. (2023). An experimental study on ferrofluid flow and heat transfer in a micro-fin straight circular tube. Journal of Thermal Analysis and Calorimetry, 148(16), 8375–8386. https://doi.org/10.1007/s10973-023-12024-4
Ahmad Khan, S., & Altamush Siddiqui, M. (2020). Numerical studies on heat and fluid flow of nanofluid in a partially heated vertical annulus. Heat Transfer - Asian Research, December 2019. https://doi.org/10.1002/htj.21672
Akbar, N. S., Raza, M., & Ellahi, R. (2016). Copper oxide nanoparticles analysis with water as base fluid for peristaltic flow in permeable tube with heat transfer. Computer Methods and Programs in Biomedicine, 130, 22–30. https://doi.org/10.1016/j.cmpb.2016.03.003
Akbari, O. A., Toghraie, D., & Karimipour, A. (2015). Impact of ribs on flow parameters and laminar heat transfer of water-aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. Advances in Mechanical Engineering, 7(11). https://doi.org/10.1177/1687814015618155
Akbari, O. A., Toghraie, D., Karimipour, A., Marzban, A., & Ahmadi, G. R. (2017). The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid. Physica E: Low-Dimensional Systems and Nanostructures, 86, 68–75. https://doi.org/10.1016/j.physe.2016.10.013
Al-Kouz, W., Abderrahmane, A., Shamshuddin, MD., Younis, O., Mohammed, S., Bég, O. A., & Toghraie, D. (2021). Heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid magnetic nanofluid flow in a trapezoidal wavy enclosure containing porous media with the Galerkin finite element method. The European Physical Journal Plus, 136(11), 1184. https://doi.org/10.1140/epjp/s13360-021-02192-3
Anoop, K. B., Sundararajan, T., & Das, S. K. (2009). Effect of particle size on the convective heat transfer in nanofluid in the developing region. International Journal of Heat and Mass Transfer, 52(9–10), 2189–2195. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.063
Azmi, W. H., Sharma, K. V., Mamat, R., Alias, A. B. S., & Izwan Misnon, I. (2012). Correlations for thermal conductivity and viscosity of water based nanofluids. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/36/1/012029
Bahiraei, M., & Alighardashi, M. (2016). Investigating non-Newtonian nanofluid flow in a narrow annulus based on second law of thermodynamics. Journal of Molecular Liquids, 219, 117–127. https://doi.org/10.1016/j.molliq.2016.03.007
Beheshti, A., Moraveji, M. K., & Hejazian, M. (2015). Comparative numerical study of nanofluid heat transfer through an annular channel. Numerical Heat Transfer; Part A: Applications, 67(1), 100–117. https://doi.org/10.1080/10407782.2014.894359
Behroyan, I., Vanaki, S. M., Ganesan, P., & Saidur, R. (2016). A comprehensive comparison of various CFD models for convective heat transfer of Al2O3 nanofluid inside a heated tube. International Communications in Heat and Mass Transfer, 70, 27–37. https://doi.org/10.1016/j.icheatmasstransfer.2015.11.001
Benkhedda, M., Boufendi, T., & Touahri, S. (2018). Laminar mixed convective heat transfer enhancement by using Ag-TiO2-water hybrid Nanofluid in a heated horizontal annulus. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 54(9), 2799–2814. https://doi.org/10.1007/s00231-018-2302-x
Bianco, V., Manca, O., & Nardini, S. (2010). Numerical simulation of water/ Al2O3 nanofluid turbulent convection. Advances in Mechanical Engineering, 2010. https://doi.org/10.1155/2010/976254
Bozorg, M. V., Hossein Doranehgard, M., Hong, K., & Xiong, Q. (2020). CFD study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oil–Al2O3 nanofluid. Renewable Energy, 145, 2598–2614. https://doi.org/10.1016/j.renene.2019.08.042
Chon, C. H., Kihm, K. D., Lee, S. P., & Choi, S. U. S. (2005a). Empirical correlation finding the role of temperature and particle size for nanofluid (Al 2O 3) thermal conductivity enhancement. Applied Physics Letters, 87(15), 1–3. https://doi.org/10.1063/1.2093936
Chon, C. H., Kihm, K. D., Lee, S. P., & Choi, S. U. S. (2005b). Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters, 87(15). https://doi.org/10.1063/1.2093936
Corcione, M. (2011). Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Conversion and Management, 52(1), 789–793. https://doi.org/10.1016/j.enconman.2010.06.072
Davoudi, A., Daneshmand, S., Monfared, V., & Mohammadzadeh, K. (2021). Numerical simulation on heat transfer of nanofluid in conical spiral heat exchanger. Progress in Computational Fluid Dynamics, 21(1), 52–63. https://doi.org/10.1504/PCFD.2021.112620
Dawood, H. K., Mohammed, H. A., & Munisamy, K. M. (2014). Heat transfer augmentation using nanofluids in an elliptic annulus with constant heat flux boundary condition. Case Studies in Thermal Engineering, 4, 32–41. https://doi.org/10.1016/j.csite.2014.06.001
Dawood, H. K., Mohammed, H. A., Sidik, N. A. C., Munisamy, K. M., & Alawi, O. A. (2017). Heat transfer augmentation in concentric elliptic annular by ethylene glycol based nanofluids. International Communications in Heat and Mass Transfer, 82, 29–39. https://doi.org/10.1016/j.icheatmasstransfer.2017.02.008
Ellahi, R., Hassan, M., & Zeeshan, A. (2015). Shape effects of nanosize particles in Cu - H 2O nanofluid on entropy generation. International Journal of Heat and Mass Transfer, 81, 449–456. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.041
Ghanbari, S., & Javaherdeh, K. (2020). Thermal performance enhancement in perforated baffled annuli by nanoporous graphene non-Newtonian nanofluid. Applied Thermal Engineering, 167. https://doi.org/10.1016/j.applthermaleng.2019.114719
Hassan, M., Marin, M., Alsharif, A., & Ellahi, R. (2018a). Convective heat transfer flow of nanofluid in a porous medium over wavy surface. Physics Letters A, 382(38), 2749–2753. https://doi.org/10.1016/j.physleta.2018.06.026
Hassan, M., Marin, M., Ellahi, R., & Alamri, S. Z. (2018b). Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/water hybrid-nanofluids. Heat Transfer Research, 49(18), 1837–1848.
He, Y., Men, Y., Liu, X., Lu, H., Chen, H., & Ding, Y. (2009). Study on forced convective heat transfer of non-newtonian nanofluids. Journal of Thermal Science, 18(1), 20–26. https://doi.org/10.1007/s11630-009-0020-x
Heidarshenas, A., Azizi, Z., Peyghambarzadeh, S. M., & Sayyahi, S. (2020). Experimental investigation of the particle size effect on heat transfer coefficient of Al2O3 nanofluid in a cylindrical microchannel heat sink. Journal of Thermal Analysis and Calorimetry, 141(2), 957–967. https://doi.org/10.1007/s10973-019-09033-7
Heris, S. Z., Etemad, S. G., & Esfahany, M. N. (2006). Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer, 33(4), 529–535. https://doi.org/10.1016/j.icheatmasstransfer.2006.01.005
Hojjat, M., Etemad, S. G., Bagheri, R., & Thibault, J. (2011a). Convective heat transfer of non-Newtonian nanofluids through a uniformly heated circular tube. International Journal of Thermal Sciences, 50(4), 525–531. https://doi.org/10.1016/j.ijthermalsci.2010.11.006
Hojjat, M., Etemad, S. G., Bagheri, R., & Thibault, J. (2011b). Laminar convective heat transfer of non-Newtonian nanofluids with constant wall temperature. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 47(2), 203–209. https://doi.org/10.1007/s00231-010-0710-7
Hojjat, M., Etemad, S. G., Bagheri, R., & Thibault, J. (2011c). Turbulent forced convection heat transfer of non-Newtonian nanofluids. Experimental Thermal and Fluid Science, 35(7), 1351–1356. https://doi.org/10.1016/j.expthermflusci.2011.05.003
Hojjat, M., Etemad, S. G., Bagheri, R., & Thibault, J. (2011d). Turbulent forced convection heat transfer of non-Newtonian nanofluids. Experimental Thermal and Fluid Science, 35(7), 1351–1356. https://doi.org/10.1016/j.expthermflusci.2011.05.003
Jafarimoghaddam, A., Aberoumand, S., Aberoumand, H., & Javaherdeh, K. (2017). Experimental study on Cu/Oil nanofluids through concentric annular tube: A correlation. Heat Transfer - Asian Research, 46(3), 251–260. https://doi.org/10.1002/htj.21210
Javadpour, A., Najafi, M., & Javaherdeh, K. (2017a). Experimental study of steady state laminar forced heat transfer of horizontal annulus tube with non-Newtonian nanofluid. Journal of Mechanical Science and Technology, 31(11), 5539–5544. https://doi.org/10.1007/s12206-017-1048-6
Javadpour, A., Najafi, M., & Javaherdeh, K. (2017b). Experimental study of steady state laminar forced heat transfer of horizontal annulus tube with non-Newtonian nanofluid. Journal of Mechanical Science and Technology, 31(11), 5539–5544. https://doi.org/10.1007/s12206-017-1048-6
Javadpour, A., Najafi, M., & Javaherdeh, K. (2018). Effect of magnetic field on forced convection heat transfer of a non-Newtonian nanofluid through an annulus: an experimental study. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 54(11), 3307–3316. https://doi.org/10.1007/s00231-018-2361-z
Koca, H. D., Doganay, S., Turgut, A., Tavman, I. H., Saidur, R., & Mahbubul, I. M. (2018). Effect of particle size on the viscosity of nanofluids: A review. Renewable and Sustainable Energy Reviews82, 1664-1674. https://doi.org/10.1016/j.rser.2017.07.016
Kumar, V., & Sarkar, J. (2018). Two-phase numerical simulation of hybrid nanofluid heat transfer in minichannel heat sink and experimental validation. International Communications in Heat and Mass Transfer, 91, 239–247. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.019
Lelea, D. (2011). The performance evaluation of Al2O3/water nanofluid flow and heat transfer in microchannel heat sink. International Journal of Heat and Mass Transfer, 54(17–18), 3891–3899. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.038
Lotfi, R., Saboohi, Y., & Rashidi, A. M. (2010). Numerical study of forced convective heat transfer of nanofluids: Comparison of different approaches. International Communications in Heat and Mass Transfer, 37(1), 74–78. https://doi.org/10.1016/j.icheatmasstransfer.2009.07.013
Majid, S., & Mohammad, J. (2017a). Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow. Journal of Central South University, 24(8), 1850–1865. https://doi.org/10.1007/s11771-017-3593-7
Majid, S., & Mohammad, J. (2017b). Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow. Journal of Central South University, 24(8), 1850–1865. https://doi.org/10.1007/s11771-017-3593-7
Marin, M., Hobiny, A., & Abbas, I. (2021). Finite element analysis of nonlinear bioheat model in skin tissue due to external thermal sources. Mathematics, 9(13), 1459. https://doi.org/10.3390/math9131459
Masoumi, N., Sohrabi, N., & Behzadmehr, A. (2009). A new model for calculating the effective viscosity of nanofluids. Journal of Physics D: Applied Physics, 42(5). https://doi.org/10.1088/0022-3727/42/5/055501
Mirzaei, M., & Azimi, A. (2016). Heat transfer and pressure drop characteristics of graphene oxide/water nanofluid in a circular tube fitted with wire coil insert. Experimental Heat Transfer, 29(2), 173–187. https://doi.org/10.1080/08916152.2014.973975
Mishra, P. C., Mukherjee, S., Nayak, S. K., & Panda, A. (2014). A brief review on viscosity of nanofluids. International Nano Letters, 4(4), 109–120. https://doi.org/10.1007/s40089-014-0126-3
Moghadassi, A. R., Masoud Hosseini, S., Henneke, D., & Elkamel, A. (2009). A model of nanofluids effective thermal conductivity based on dimensionless groups. Journal of Thermal Analysis and Calorimetry, 96(1), 81–84. https://doi.org/10.1007/s10973-008-9843-z
Moghari, R. M., Mujumdar, A. S., Shariat, M., F. Talebi, Sajjadi, S. M., & Akbarinia, A. (2013). Investigation effect of nanoparticle mean diameter on mixed convection Al2O3-water nanofluid flow in an annulus by two phase mixture model. International Communications in Heat and Mass Transfer, 49, 25–35. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.017
Mohammadzadeh, K., Khaleghi, H., Khadem Abolfazli, H. R., & Seddiq, M. (2018). Effects of gas cross-over through the membrane on water management in the cathode and anode sides of PEM fuel cell. Journal of Applied Fluid Mechanics, 11(4), 861–875. https://doi.org/10.29252/jafm.11.04.28559
Mojarrad, M. S., Keshavarz, A., Ziabasharhagh, M., & Raznahan, M. M. (2014). Experimental investigation on heat transfer enhancement of alumina/water and alumina/water-ethylene glycol nanofluids in thermally developing laminar flow. Experimental Thermal and Fluid Science, 53, 111–118. https://doi.org/10.1016/j.expthermflusci.2013.11.015
Mokhtari Moghari, R., Akbarinia, A., Shariat, M., Talebi, F., & Laur, R. (2011a). Two phase mixed convection Al2O3-water nanofluid flow in an annulus. International Journal of Multiphase Flow, 37(6), 585–595. https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.008
Mokhtari Moghari, R., Akbarinia, A., Shariat, M., Talebi, F., & Laur, R. (2011b). Two phase mixed convection Al2O3-water nanofluid flow in an annulus. International Journal of Multiphase Flow, 37(6), 585–595. https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.008
Moraveji, M. K., Haddad, S. M. H., & Darabi, M. (2012). Modeling of forced convective heat transfer of a non-Newtonian nanofluid in the horizontal tube under constant heat flux with computational fluid dynamics. International Communications in Heat and Mass Transfer, 39(7), 995–999. https://doi.org/10.1016/j.icheatmasstransfer.2012.05.003
Naderi, B., & Mohammadzadeh, K. (2020). Numerical unsteady simulation of nanofluid flow over a heated angular oscillating circular cylinder. Journal of Thermal Analysis and Calorimetry, 139(1), 721–739. https://doi.org/10.1007/s10973-019-08349-8
Nasiri, M., Etemad, S. G., & Bagheri, R. (2011a). Experimental heat transfer of nanofluid through an annular duct. International Communications in Heat and Mass Transfer, 38(7), 958–963. https://doi.org/10.1016/j.icheatmasstransfer.2011.04.011
Nasiri, M., Etemad, S. Gh., & Bagheri, R. (2011b). Experimental heat transfer of nanofluid through an annular duct. International Communications in Heat and Mass Transfer, 38(7), 958–963. https://doi.org/10.1016/j.icheatmasstransfer.2011.04.011
Othman, M. I. A., Said, S., & Marin, M. (2019). A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase-lag model. International Journal of Numerical Methods for Heat & Fluid Flow, 29(12), 4788–4806. https://doi.org/10.1108/HFF-04-2019-0359
Popa, C. V., Nguyen, C. T., & Gherasim, I. (2017). New specific heat data for Al2O3 and CuO nanoparticles in suspension in water and Ethylene Glycol. International Journal of Thermal Sciences, 111, 108–115. https://doi.org/10.1016/j.ijthermalsci.2016.08.016
Rabby, M. I. I., Hasan, M. E., Amin, A. al, & Islam, A. K. M. S. (2019, July). Laminar convective heat transfer in developing region of a pipe by using nanofluids. AIP Conference Proceedings, 2121. https://doi.org/10.1063/1.5115921
Rabienataj Darzi, A. A., Farhadi, M., & Lavasani, A. M. (2016). Two phase mixture model of nano-enhanced mixed convection heat transfer in finned enclosure. Chemical Engineering Research and Design, 111, 294–304. https://doi.org/10.1016/j.cherd.2016.05.019
Ragueb, H., & Mansouri, K. (2018). An analytical study of the periodic laminar forced convection of non-Newtonian nanofluid flow inside an elliptical duct. International Journal of Heat and Mass Transfer, 127, 469–483. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.051
Rahimi Gheynani, A., Ali Akbari, O., Zarringhalam, M., Ahmadi Sheikh Shabani, G., Alnaqi, A. A., Goodarzi, M., & Toghraie, D. (2019). Investigating the effect of nanoparticles diameter on turbulent flow and heat transfer properties of non-Newtonian carboxymethyl cellulose/CuO fluid in a microtube. International Journal of Numerical Methods for Heat & Fluid Flow, 29(5), 1699–1723. https://doi.org/10.1108/HFF-07-2018-0368
Rea, U., McKrell, T., Hu, L. wen, & Buongiorno, J. (2009). Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids. International Journal of Heat and Mass Transfer, 52(7–8), 2042–2048. https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.025
Sajadifar, S. A., Karimipour, A., & Toghraie, D. (2017). Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions. European Journal of Mechanics, B/Fluids, 61, 25–32. https://doi.org/10.1016/j.euromechflu.2016.09.014
Sepehrnia, M., Mohammadzadeh, K., Veyseh, M. M., Agah, E., & Amani, M. (2022a). Rheological behavior of engine oil based hybrid nanofluid containing MWCNTs and ZnO nanopowders: Experimental analysis, developing a novel correlation, and neural network modeling. Powder Technology, 404, 117492. https://doi.org/10.1016/j.powtec.2022.117492
Sepehrnia, M., Mohammadzadeh, K., Veyseh, M. M., Agah, E., & Amani, M. (2022b). Rheological behavior of engine oil based hybrid nanofluid containing MWCNTs and ZnO nanopowders: Experimental analysis, developing a novel correlation, and neural network modeling. Powder Technology, 404, 117492. https://doi.org/10.1016/j.powtec.2022.117492
Shahsavar, A., Moradi, M., & Bahiraei, M. (2018). Heat transfer and entropy generation optimization for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a concentric annulus. Journal of the Taiwan Institute of Chemical Engineers, 84, 28–40. https://doi.org/10.1016/j.jtice.2017.12.029
Shojaeian, M., Karimzadehkhouei, M., & Koşar, A. (2017). Experimental investigation on convective heat transfer of non-Newtonian flows of Xanthan gum solutions in microtubes. Experimental Thermal and Fluid Science, 85, 305–312. https://doi.org/10.1016/j.expthermflusci.2017.02.025
Siavashi, M., & Jamali, M. (2016a). Heat transfer and entropy generation analysis of turbulent flow of TiO 2 -water nanofluid inside annuli with different radius ratios using two-phase mixture model. Applied Thermal Engineering, 100, 1149–1160. https://doi.org/10.1016/j.applthermaleng.2016.02.093
Siavashi, M., & Jamali, M. (2016b). Heat transfer and entropy generation analysis of turbulent flow of TiO2-water nanofluid inside annuli with different radius ratios using two-phase mixture model. Applied Thermal Engineering, 100, 1149–1160. https://doi.org/10.1016/j.applthermaleng.2016.02.093
Siavashi, M., & Rostami, A. (2017a). Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media. International Journal of Mechanical Sciences, 133(July), 689–703. https://doi.org/10.1016/j.ijmecsci.2017.09.031
Siavashi, M., & Rostami, A. (2017b). Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media. International Journal of Mechanical Sciences, 133, 689–703. https://doi.org/10.1016/j.ijmecsci.2017.09.031
Siavashi, M., Bahrami, H. R. T., & Saffari, H. (2017a). Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model. Numerical Heat Transfer; Part A: Applications, 71(12), 1251–1273. https://doi.org/10.1080/10407782.2017.1345270
Siavashi, M., Bahrami, H. R. T., & Saffari, H. (2017b). Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model. Numerical Heat Transfer, Part A: Applications, 71(12), 1251–1273. https://doi.org/10.1080/10407782.2017.1345270
Soltani, S., Etemad, S. G., & Thibault, J. (2010). Pool boiling heat transfer of non-Newtonian nanofluids. International Communications in Heat and Mass Transfer, 37(1), 29–33. https://doi.org/10.1016/j.icheatmasstransfer.2009.08.005
Tahiri, A., & Mansouri, K. (2017). Theoretical investigation of laminar flow convective heat transfer in a circular duct for a non-Newtonian nanofluid. Applied Thermal Engineering, 112, 1027–1039. https://doi.org/10.1016/j.applthermaleng.2016.10.137
Vajjha, R. S., & Das, D. K. (2009). Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International Journal of Heat and Mass Transfer, 52(21–22), 4675–4682. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027
Vlase, S., Stac, C. N., & Marin, M. (2017). A method for the study of the vibration of mechanical bars systems with symmetries. Acta Technica Napocensis Series, 60(4), 539–544.
Wen, D., & Ding, Y. (2004). Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, 47(24), 5181–5188. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
Yarmohammadi, S., Mohammadzadeh, K., Farhadi, M., Hajimiri, H., & Modir, A. (2020). Multi-objective optimization of thermal and flow characteristics of R-404A evaporation through corrugated tubes. Journal of Energy Storage, 27(August 2019), 101137. https://doi.org/10.1016/j.est.2019.101137
Zarringhalam, M., Karimipour, A., & Toghraie, D. (2016). Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–Water nanofluid. Experimental Thermal and Fluid Science, 76, 342–351. https://doi.org/10.1016/j.expthermflusci.2016.03.026
Zeinali Heris, S., Nasr Esfahany, M., & Etemad, S. G. (2007a). Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. International Journal of Heat and Fluid Flow, 28(2), 203–210. https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001
Zeinali Heris, S., Nasr Esfahany, M., & Etemad, S. G. (2007b). Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. International Journal of Heat and Fluid Flow, 28(2), 203–210. https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001
Zeinali Heris, S., Nasr Esfahany, M., & Etemad, S. Gh. (2007c). Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. International Journal of Heat and Fluid Flow, 28(2), 203–210. https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001