Afridi, S., Khan, T. A., Shah, S. I. A., Shams, T. A., Mohiuddin, K., & Kukulka, D. J. (2023). Techniques of fluidic thrust vectoring in jet engine nozzles: A review.
Energies, 16 (15), 5721.
https://doi.org/10.3390/en16155721.
Ali, A., Rodriguez, C. G., Neely, A. J., & Young, J. (2012).
Combination of fluidic thrust modulation and vectoring in a 2D nozzle. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.
https://doi.org/10.2514/6.2012-3780.
Anderson, J. D. (2004). Modern compressible flow: Quasi-one-dimensional flow. Boston McGraw-Hill.
Banazadeh, A., & Saghafi, F. (2017). An investigation of empirical formulation and design optimization of co-flow fluidic thrust vectoring nozzles.
The Aeronautical Journal, 121 (1236), 213-236.
https://doi:10.1017/aer.2016.110.
Cao, Q., Lui, M., Li, X., Lin, C. H., Wei, D., Ji, S., Zhang, T., & Chen, Q. (2022). Influencing factors in the simulation of airflow and particle transportation in aircraft cabins by CFD.
Building and Environment. 207.
https://doi.org/10.1016/j.buildenv.2021.108413.
Carlson, G. T., & Lee, E. E. (1981). Experimental and analytical investigation of axisymmetric supersonic cruise nozzle geometry at mach numbers from 0.6 to 1.3. NASA-TP-1953 L-14661.
Deere, K. A. (2003). Summary of fluidic thrust vectoring research conducted at NASA Langley research centre. The 21 AIAA Applied Aerodynamics Conference. 23681.
Deng, R. Y., Kong, F. S., & Kim, H. D. (2014). Numerical simulation of fluidic thrust vectoring in an axisymmetric supersonic nozzle.
Journal Mechanical Science and Technology 28(12), 4979–4987.
https://doi.org/10.1007/s12206-0141119-x.
Faheem, M., Khan, A., Kumar, R., Khan, S. A., Asrar, W., & Sapardi, A. M. (2021). Experimental study on the mean flow characteristics of a supersonic multiple jet configuration.
Aerospace Science and Technology, 108, 106377.
https://doi.org/10.1016/j.ast.2020.106377.
Ferlauto, M., & Marsilio, R. (2017). Numerical investigation of the dynamic characteristics of a dual throat-nozzle for fluidic thrust-vectoring.
AIAAJ.
55 (1).
https://doi.org/10.2514/1.J055044.
Flamm, J. D. (1998).
Experimental study of a nozzle using fluidic counterflow for thrust vectoring. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.
https://doi.org/10.2514/6.1998-3255.
Forghany, F., Rahni, M. T., & Ghohieh, A. A. (2018). Optimization of freestream flow effects on thrust shock vector control nozzle.
Journal Applied Fluid Mechanics, 11(2), 361-374.
https://10.29252/jafm.11.02.28243.
Gao, J., Yuan, Z., Hou, Y., & Chen, W. (2024). Numerical study on the influence of plugging rate on the performance of adjustable steam ejector
. International Journal of Fluid Engineering, 1(2).
https://doi.org/10.1063/5.0204421.
Hamid, K. S. A. (1989).
Three-dimensional calculations for underexpanded and overexpanded supersonic jet flows. 7th Applied Aerodynamics Conference.
https://doi.org/10.2514/6.1989-2196.
Ikaza, D. (2000). Thrust vectoring nozzle for modern military aircraft. Active Control Technology for Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles. 11.1–11.10.
Jankovic, A., Chaudhary, G., & Goia, F. (2021). Designing the design of experiments (DOE) – An investigation on the influence of different factorial designs on the characterization of complex systems.
Energy and Buildings, 250, 111298.
https://doi.org/10.1016/j.enbuild.2021.111298.
Jingwei, S. H. I., Zhanxue, W. A. N. G., Li, Z. H. O. U., & Xiaolin, S. U. N. (2018). Investigation of flow characteristics of SVC nozzles.
Journal of Applied Fluid Mechanics 11(2), 331-342.
https://doi.org/10.29252/jafm.11.02.28294
Jingwei, S., Zhanxue, W., Li, Z., & Xiaolin, S. (2020). Investigation on flow characteristics and performance estimation of a hybrid SVC nozzle.
Journal of Applied Fluid Mechanics 13(1), 25-38.
https://doi.org/10.29252/jafm.13.01.29804
Kara, E., & Kurtuluş, D. F. (2023). Determination of optimum parameter space of a fluidic thrust vectoring system based on system based on coanda effect using gradient-based optimization technique.
Journal of Applied Fluid Mechanics 16(10), 1974-1988.
https://doi.org/10.47176/jafm.16.10.1855
Lai, G., & Sheng, W. (2023). Supersonic reacting jet flows from a three-dimensional divergent conical nozzle.
Society of Industrial and Applied Science, 55(5).
https://doi.org/10.1137/22M1529099.
Li, Q., Yao, H., Chen, J., & Luo, X. (2024). Bypass pigging technology in improving pigging safety and efficiency: Principles, progress, and potentials.
International Journal of Fluid Engineering, 1(2), 020602.
https://doi.org/10.1063/5.0202414
Lim, C. M., Kim, H. D., & Setoguchi, T. (2006).
Studies on thrust vector control using a fluidic counter-flow concept. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.
https://doi.org/10.2514/6.2006-5204.
Miller, D. N., Yagle, P. J. & Hamstra, J. W. (2012).
Fluidic throat skewing for thrust vectoring in fixed geometry nozzles. 37th Aerospace Sciences Meeting and Exhibit.
https://doi.org/10.2514/6.1999-365.
Muhammed, I. V. V., Banu, S. N., Suryan, A., Lijo, V., Simurda, D. & Kim, H. D. (2024). Computational study of flow separation in truncated ideal contour nozzles under high-altitude conditions.
International Journal of Fluid Engineering, 1(1), 013101.
https://doi.org/10.1063/5.0190399
Neely, A. J., Gesto, F., & Young, J. 2007.
Performance studies of shock vector control fluidic thrust vectoring. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.
https://doi.org/10.2514/6.2007-5086.
Reddy, K. P., Nair, C. G. S., & Biju, S. R. (2021). Systems engineering studies on induction of redundant electromechanical engine gimbal control actuation system in the second stage polar satellite launch vehicle.
Advances in Systems Engineering, 609-618.
https://doi.org/10.1007/978-981-15-8025-3.
Resta, E., Marsilio, R. & Ferlauto, M. (2021). Thrust vectoring of a fixed axisymmetric supersonic nozzle using the shock-vector control method.
MDPI Journal, 6(2),
https://doi.org/10.3390/fluids6120441.
Salimi, M. R., Askari, R., & Hasani, M. (2022). Computational investigation of effects of side-injection geometry on thrust vectoring performance in a fuel-injected dual throat nozzle.
Journal of Applied Fluid Mechanics 15(4), 1137-1153.
https://doi.org/10.47176/jafm.15.04.33354
Schwagerus, N., Soshel, M., Krummenauer, M., Kozulovic, D., & Niehuis, R. (2023). Numerical investigation of a Coandă-based fluidic thrust vectoring system for subsonic nozzles.
CEAS Aeronaut Journal, 14, 939–952.
https://doi.org/10.1007/s13272-023-00677-8.
Shinde, R. M., & Singh, S. (2017). Automation in non-destructive examination for thrust chamber assembly of vikas engine.
Journal of Nondestructive Testing. 22(6).
https://www.ndt.net/?id=21244.
Tuttle, J. L., & Blount, D. H. (1983). Perfect bell nozzle parametric and optimization curves. NASA-RP-1104.
Wang Z., Feng, Y., Yang, Y., Wang, J., Xu, S. & Qin, J. (2024). Multi-objective optimization of rectangular cooling channel design using Design of Experiments (DOE).
Applied Thermal Engineering, 242, 122507.
https://doi.org/10.1016/j.applthermaleng.2024.122507.
Wing, D. J., Mills, C. T. L., & Mason, M. L. (1997). Static investigation of a multi axis thrust- vectoring nozzle with variable internal contouring ability. NASA TP-3628.
Wu, K. X., Kim, T. H., & Kim, H. D. (2021). Numerical study of fluidic thrust vector control using dual throat nozzle
. Journal of Applied Fluid Mechanics, 14(1), 73-87.
https://doi.org/10.47176/jafm.14.01.31690
Yagle, P. J., Miller, D. N., Ginn, K. B. & Hamstra, J. W. (2001). Demonstration of fluidic throat skewing for thrust vectoring in structurally fixed nozzles.
Journal of Engineering Gas Turbines and Power, 123(3), 502-507.
https://doi.org/10.1115/1.1361109.
Yu, B., & Shu, W. (2017). A novel control approach for a thrust vector system with electromechanical actuator.
IEEE Access, 5, 15542–15550.
https://10.1109/ACCESS.2017.2731779.
Yu, K., Yang, X., & Mo, Z. (2014). profile design and multifidelity optimization of solid rocket motor nozzle.
Journal of Fluids Engineering, 136(3).
https://doi.org/10.1115/1.4026248.
Zeng, L., Gao Z., Tiang, X., & Wang, L. (2024). Mechanism analysis of the vortex ring and its effects on an axial descending rotor.
International Journal of Fluid Engineering, 1(2).
https://doi.org/10.1063/5.0200688.
Zmijanovic, V., Leger, L., Lago, V., Sellam, M., & Chpoun, A. (2012).
Experimental and numerical study of thrust-vectoring effects by transverse gas injection into a propulsive axisymmetric c-d nozzle. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.
https://10.2514/6.2012-3874