Computational Investigation of Fluidic Thrust Vectoring Control in Modified Vikas Nozzle

Document Type : Regular Article

Authors

Department of Aeronautical Engineering, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu – 638401, India.

10.47176/jafm.18.3.2915

Abstract

Over the decades, polar satellite launch vehicles and geosynchronous launch vehicles have utilized variants of the Vikas engine for numerous space operations. The pitching control for those launch vehicles is achieved by gimbaling the Vikas engine nozzle up to ± 4° with mechanical actuating parts. This research investigation dealt with the design modification, analysis, and estimation of performance parameters in the modified Vikas nozzle configurations intended for fluidic thrust vectoring control. Hence, the technique of interest in this investigation was to assess the effects of the fluidic throat skewing technique in an adapted nozzle configuration of the Vikas nozzle. The distinct design configurations were initially iterated with the design of experiments (DOE) method to estimate and adopt an optimum nozzle configuration with higher thrust vectoring effectiveness. The computational analysis utilized the k-e Reynolds-averaged Navier-Stokes (RANS) numerical model. The flow characteristics of the resolved nozzle configuration were analyzed and validated under three distinct sonic mach freestreams. Finally, air was employed as the secondary fluid in the injector plenum, and the analysis was carried out by varying the secondary mass injection rates. The analysis results depicted that the implemented fluidic injection thrust vectoring approach was significantly effective by achieving ± 5° of tilt with a system thrust force ratio of 0.9190 for 9% of secondary mass flow rate injection.

Keywords

Main Subjects


Afridi, S., Khan, T. A., Shah, S. I. A., Shams, T. A., Mohiuddin, K., & Kukulka, D. J. (2023). Techniques of fluidic thrust vectoring in jet engine nozzles: A review. Energies, 16 (15), 5721. https://doi.org/10.3390/en16155721.
Ali, A., Rodriguez, C. G., Neely, A. J., & Young, J. (2012). Combination of fluidic thrust modulation and vectoring in a 2D nozzle. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. https://doi.org/10.2514/6.2012-3780.
Anderson, J. D. (2004). Modern compressible flow: Quasi-one-dimensional flow. Boston McGraw-Hill.
Banazadeh, A., & Saghafi, F. (2017). An investigation of empirical formulation and design optimization of co-flow fluidic thrust vectoring nozzles. The Aeronautical Journal, 121 (1236), 213-236. https://doi:10.1017/aer.2016.110.
Bulat, M. P., & Bulat, P. V. (2013). Comparison of turbulence models in the calculation of supersonic separated flows. World Applied Sciences Journal, 27 (10), 1263-1266. https://10.5829//idosi.wasj.2013.27.10.13715.
Cao, Q., Lui, M., Li, X., Lin, C. H., Wei, D., Ji, S., Zhang, T., & Chen, Q. (2022). Influencing factors in the simulation of airflow and particle transportation in aircraft cabins by CFD. Building and Environment. 207. https://doi.org/10.1016/j.buildenv.2021.108413.
Carlson, G. T., & Lee, E. E. (1981). Experimental and analytical investigation of axisymmetric supersonic cruise nozzle geometry at mach numbers from 0.6 to 1.3. NASA-TP-1953 L-14661.
Chen, J. L., & Liao, Y. H. (2020). Parametric study on thrust vectoring with secondary injection in a convergent divergent nozzle. Journal of Aerospace Engineering. 33 (4). https://doi.org/10.1061/(ASCE)AS.1943-5525.0001136.
Deere, K. A. (2003). Summary of fluidic thrust vectoring research conducted at NASA Langley research centre. The 21 AIAA Applied Aerodynamics Conference. 23681.
Deng, R. Y., Kong, F. S., & Kim, H. D. (2014). Numerical simulation of fluidic thrust vectoring in an axisymmetric supersonic nozzle. Journal Mechanical Science and Technology 28(12), 4979–4987. https://doi.org/10.1007/s12206-0141119-x.
Faheem, M., Khan, A., Kumar, R., Khan, S. A., Asrar, W., & Sapardi, A. M. (2021). Experimental study on the mean flow characteristics of a supersonic multiple jet configuration. Aerospace Science and Technology, 108, 106377. https://doi.org/10.1016/j.ast.2020.106377.
Ferlauto, M., & Marsilio, R. (2017). Numerical investigation of the dynamic characteristics of a dual throat-nozzle for fluidic thrust-vectoring. AIAAJ. 55 (1). https://doi.org/10.2514/1.J055044.
Flamm, J. D. (1998). Experimental study of a nozzle using fluidic counterflow for thrust vectoring. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. https://doi.org/10.2514/6.1998-3255.
Forghany, F., Rahni, M. T., & Ghohieh, A. A. (2017). Numerical investigation of optimization of injection angle effects on fluidic thrust vectoring. Journal of Applied Fluid Mechanics. 10(1), 157. https://doi.org/10.18869/acadpub.jafm.73.238.26519
Forghany, F., Rahni, M. T., & Ghohieh, A. A. (2018). Optimization of freestream flow effects on thrust shock vector control nozzle. Journal Applied Fluid Mechanics, 11(2), 361-374. https://10.29252/jafm.11.02.28243.
Gao, J., Yuan, Z., Hou, Y., & Chen, W. (2024). Numerical study on the influence of plugging rate on the performance of adjustable steam ejector. International Journal of Fluid Engineering, 1(2). https://doi.org/10.1063/5.0204421.
Guruprasad, B. R., & Mayilvaganan, M. (2019). PSLV: the versatile workhouse launch vehicle of india. Journal of Aerospace Science and Technologies, 71(1). http://dx.doi.org/10.61653/joast.v71i1.2019.112.
Hamid, K. S. A. (1989). Three-dimensional calculations for underexpanded and overexpanded supersonic jet flows. 7th Applied Aerodynamics Conference.  https://doi.org/10.2514/6.1989-2196.
Ikaza, D. (2000). Thrust vectoring nozzle for modern military aircraft. Active Control Technology for Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles. 11.1–11.10.
Isaac, J. J., & Rajashekar, C. (2014). Fluidic thrust vectoring nozzles. Semantic Scholar. https://api.semanticscholar.org/CorpusID:114481763
Jankovic, A., Chaudhary, G., & Goia, F. (2021). Designing the design of experiments (DOE) – An investigation on the influence of different factorial designs on the characterization of complex systems. Energy and Buildings, 250, 111298. https://doi.org/10.1016/j.enbuild.2021.111298.
Jeyakumar, D., & Biswas, K. K. (2003). Stage separation system design and dynamic analysis of ISRO launch vehicles. Journal Aerospace Sciences and Technologies, 55(3), 211–222. https://doi.org/10.61653/joast.v55i3.2003.761.
Jingwei, S. H. I., Zhanxue, W. A. N. G., Li, Z. H. O. U., & Xiaolin, S. U. N. (2018). Investigation of flow characteristics of SVC nozzles. Journal of Applied Fluid Mechanics 11(2), 331-342. https://doi.org/10.29252/jafm.11.02.28294
Jingwei, S., Zhanxue, W., Li, Z., & Xiaolin, S. (2020). Investigation on flow characteristics and performance estimation of a hybrid SVC nozzle. Journal of Applied Fluid Mechanics 13(1), 25-38. https://doi.org/10.29252/jafm.13.01.29804
Kara, E., & Kurtuluş, D. F. (2023). Determination of optimum parameter space of a fluidic thrust vectoring system based on system based on coanda effect using gradient-based optimization technique. Journal of Applied Fluid Mechanics 16(10), 1974-1988. https://doi.org/10.47176/jafm.16.10.1855
Khare, S., & Saha, U. K. (2021). Rocket nozzles: 75 years of research and development. Sādhanā, 46, 76. https://doi.org/10.1007/s12046-021-01584-6
Lai, G., & Sheng, W. (2023). Supersonic reacting jet flows from a three-dimensional divergent conical nozzle. Society of Industrial and Applied Science, 55(5). https://doi.org/10.1137/22M1529099.
Li, L., & Saito, T. (2012). Numerical and experimental investigations of fluidic thrust vectoring mechanism. International Journal Aerospace Innovations, 4(1), 53-64. https://doi.org/10.1260/1757-2258.4.1-2.53
Li, Q., Yao, H., Chen, J., & Luo, X. (2024). Bypass pigging technology in improving pigging safety and efficiency: Principles, progress, and potentials. International Journal of Fluid Engineering, 1(2), 020602. https://doi.org/10.1063/5.0202414
Lim, C. M., Kim, H. D., & Setoguchi, T. (2006). Studies on thrust vector control using a fluidic counter-flow concept. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. https://doi.org/10.2514/6.2006-5204.
Miller, D. N., Yagle, P. J. & Hamstra, J. W. (2012). Fluidic throat skewing for thrust vectoring in fixed geometry nozzles. 37th Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.1999-365.
Muhammed, I. V. V., Banu, S. N., Suryan, A., Lijo, V., Simurda, D. & Kim, H. D. (2024). Computational study of flow separation in truncated ideal contour nozzles under high-altitude conditions. International Journal of Fluid Engineering, 1(1), 013101. https://doi.org/10.1063/5.0190399
Neely, A. J., Gesto, F., & Young, J. 2007. Performance studies of shock vector control fluidic thrust vectoring. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. https://doi.org/10.2514/6.2007-5086.
Reddy, K. P., Nair, C. G. S., & Biju, S. R. (2021). Systems engineering studies on induction of redundant electromechanical engine gimbal control actuation system in the second stage polar satellite launch vehicle. Advances in Systems Engineering, 609-618. https://doi.org/10.1007/978-981-15-8025-3.
Resta, E., Marsilio, R. & Ferlauto, M. (2021). Thrust vectoring of a fixed axisymmetric supersonic nozzle using the shock-vector control method. MDPI Journal, 6(2), https://doi.org/10.3390/fluids6120441.
Salimi, M. R., Askari, R., & Hasani, M. (2022). Computational investigation of effects of side-injection geometry on thrust vectoring performance in a fuel-injected dual throat nozzle. Journal of Applied Fluid Mechanics 15(4), 1137-1153. https://doi.org/10.47176/jafm.15.04.33354
Schwagerus, N., Soshel, M., Krummenauer, M., Kozulovic, D., & Niehuis, R. (2023). Numerical investigation of a Coandă-based fluidic thrust vectoring system for subsonic nozzles. CEAS Aeronaut Journal, 14, 939–952. https://doi.org/10.1007/s13272-023-00677-8.
Shinde, R. M., & Singh, S. (2017). Automation in non-destructive examination for thrust chamber assembly of vikas engine. Journal of Nondestructive Testing. 22(6). https://www.ndt.net/?id=21244.
Tuttle, J. L., & Blount, D. H. (1983). Perfect bell nozzle parametric and optimization curves. NASA-RP-1104.
Wang Z., Feng, Y., Yang, Y., Wang, J., Xu, S. & Qin, J. (2024). Multi-objective optimization of rectangular cooling channel design using Design of Experiments (DOE). Applied Thermal Engineering, 242, 122507. https://doi.org/10.1016/j.applthermaleng.2024.122507.
Wing, D. J., Mills, C. T. L., & Mason, M. L. (1997). Static investigation of a multi axis thrust- vectoring nozzle with variable internal contouring ability. NASA TP-3628.
Wu, K. X., Kim, T. H., & Kim, H. D. (2021). Numerical study of fluidic thrust vector control using dual throat nozzle. Journal of Applied Fluid Mechanics, 14(1), 73-87. https://doi.org/10.47176/jafm.14.01.31690
Wu, K., Kim, T. H., & Kim, H. D. (2020a). Sensitivity analysis of counterflow thrust vector control with a three-dimensional rectangular nozzle. Journal of Aerospace Engineering, 34(1). https://doi.org/10.1061/(ASCE)AS.1943-5525.0001228.
Wu, K., Kim, T. H., & Kim, H. D. (2020b). Theoretical and numerical analyses of aerodynamic characteristics on shock vector control. Journal Aerospace Engineering. 33(5). https://doi.org/10.1061/(ASCE)AS.1943-5525.0001169.
Wu, K., Jin, Y. & Kim, H. D. (2019). Hysteretic behaviour in counter-flow thrust vector control. Journal Aerospace Engineering, 32(4). https://doi.org/10.1061/(ASCE)AS.1943-5525.0001027.
Yagle, P. J., Miller, D. N., Ginn, K. B. & Hamstra, J. W. (2001). Demonstration of fluidic throat skewing for thrust vectoring in structurally fixed nozzles. Journal of Engineering Gas Turbines and Power, 123(3), 502-507. https://doi.org/10.1115/1.1361109.
Yang, C., Yakawa, G., & Wu, C. C. (2000). Quadrilateral approaches for accurate free mesh method. International Journal Numerical Methods in Engineering, 47, 1445-1462. https://doi.org/10.1002/(SICI)10970207(20000320)47:8<1445::AID-NME838>3.0.CO;2-K.
Yu, B., & Shu, W. (2017). A novel control approach for a thrust vector system with electromechanical actuator. IEEE Access, 5, 15542–15550. https://10.1109/ACCESS.2017.2731779.
Yu, K., Yang, X., & Mo, Z. (2014). profile design and multifidelity optimization of solid rocket motor nozzle. Journal of Fluids Engineering, 136(3). https://doi.org/10.1115/1.4026248.
Zeng, L., Gao Z., Tiang, X., & Wang, L. (2024). Mechanism analysis of the vortex ring and its effects on an axial descending rotor. International Journal of Fluid Engineering, 1(2). https://doi.org/10.1063/5.0200688.
Zmijanovic, V., Leger, L., Lago, V., Sellam, M., & Chpoun, A. (2012). Experimental and numerical study of thrust-vectoring effects by transverse gas injection into a propulsive axisymmetric c-d nozzle. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. https://10.2514/6.2012-3874