Acherjee, B., Mondal, S., Tudu, B., & Misra, D. (2011). Application of artificial neural network for predicting weld quality in laser transmission welding of thermoplastics.
Applied Soft Computing,
11(2), 2548-2555.
http://dx.doi.org/10.1016/j.asoc.2010.10.005
Alzubi, J., Nayyar, A., & Kumar, A. (2018, November).
Machine learning from theory to algorithms: an overview. Journal of Physics: Conference Series (Vol. 1142, p. 012012). IOP Publishing.
https://doi.org/10.1088/1742-6596/1142/1/012012
Chabbi, A., Yallese, M. A., Nouioua, M., Meddour, I., Mabrouki, T., & Girardin, F. (2017). Modeling and optimization of turning process parameters during the cutting of polymer (POM C) based on RSM, ANN, and DF methods.
The International Journal of Advanced Manufacturing Technology,
91, 2267-2290.
https://doi.org/ 10.1007/s00170-016-9858-8
Ekradi, K., & Madadi, A. (2020). Performance improvement of a transonic centrifugal compressor impeller with splitter blade by three-dimensional optimization.
Energy,
201, 117582.
https://doi.org/10.1016/j.energy.2020.117582
Gan, X., Pei, J., Wang, W., Yuan, S., & Lin, B. (2023). Application of a modified MOPSO algorithm and multi-layer artificial neural network in centrifugal pump optimization.
Engineering Optimization,
55(4), 580-598.
https://doi.org/10.1080/0305215X.2021.2015585
Gao, Z., Zhu, W., Lu, L., Deng, J., Zhang, J., & Wuang, F. (2014). Numerical and experimental study of unsteady flow in a large centrifugal pump with stay vanes.
Journal of Fluids Engineering,
136(7), 071101.
https://doi.org/10.1115/1.4026477
Garcia-Romeu, M. L., Ceretti, E., Fiorentino, A., & Giardini, C. (2010, January).
Forming force prediction in two-point incremental forming using Backpropagation neural networks in combination with Genetic Algorithms. International Manufacturing Science and Engineering Conference (Vol. 49477, pp. 99-106).
http://dx.doi.org/10.1115/MSEC2010-34142
Ghadimi, B., Nejat, A., Nourbakhsh, S. A., & Naderi, N. (2019). Multi‐objective genetic algorithm assisted by an artificial neural network metamodel for shape optimization of a centrifugal blood pump.
Artificial Organs,
43(5), E76-E93.
https://doi.org/10.1111/aor.13366
González, J., & Santolaria, C. (2006). Unsteady flow structure and global variables in a centrifugal pump.
ASME. Journal of Fluids Engineering, 128(5): 937–946.
https://doi.org/10.1115/1.2234782
Han, X., Kang, Y., Sheng, J., Hu, Y., & Zhao, W. (2020). Centrifugal pump impeller and volute shape optimization via combined NUMECA, genetic algorithm, and back propagation neural network.
Structural and Multidisciplinary Optimization,
61, 381-409.
https://link.springer.com/article/10.1007/s00158-019-02367-8
Kaupert, K. A., & Staubli, T. (1999). The unsteady pressure field in a high specific speed centrifugal pump impeller—part I: influence of the volute.
ASME. Journal of Fluids Engineering, 121(3), 621–626.
https://doi.org/10.1115/1.2823514
Kergourlay, G., Younsi, M., Bakir, F., & Rey, R. (2007). Influence of splitter blades on the flow field of a centrifugal pump: test-analysis comparison.
International Journal of Rotating Machinery, 2007(1)
https://doi.org/10.1155/2007/85024
Liu, H., Wang, K., Yuan, S., Tan, M., Wang, Y., & Dong, L. (2013). Multicondition optimization and experimental measurements of a double-blade centrifugal pump impeller.
Journal of Fluids Engineering,
135(1), 011103.
https://doi.org/10.1115/1.4023077
Massoudi, S., Picard, C., & Schiffmann, J. (2022). Robust design using Mult objective optimisation and artificial neural networks with application to a heat pump radial compressor.
Design Science,
8, e1.
https://doi.org/10.1017/dsj.2021.25
Owoyele, O., & Pal, P. (2021a). A novel active optimization approach for rapid and efficient design space exploration using ensemble machine learning.
Journal of Energy Resources Technology,
143(3), 032307.
https://doi.org/10.1115/1.4049178
Pedersen, N., Larsen, P. S., & Jacobsen, C. B. (2003). Flow in a centrifugal pump impeller at design and off-design conditions—part I: particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements.
ASME. Journal of Fluids Engineering, 125(1): 61–72.
https://doi.org/10.1115/1.1524585
Pei, J., Gan, X., Wang, W., Yuan, S., & Tang, Y. (2019). Multi-objective shape optimization on the inlet pipe of a vertical inline pump.
Journal of Fluids Engineering,
141(6), 061108.
https://doi.org/10.1115/1.4043056
Pei, J., Yuan, S., Benra, F. K., & Dohmen, H. J. (2012). Numerical prediction of unsteady pressure field within the whole flow passage of a radial single-blade pump. ASME, Journal of Fluids Engineering , 134(10).
https://doi.org/10.1115/1.4007382
Qiu, J. T., Yang, C. J., Dong, X. Q., Wang, Z. L., Li, W., & Noblesse, F. (2018). Numerical simulation and uncertainty analysis of an axial-flow waterjet pump.
Journal of Marine Science and Engineering,
6(2), 71.
https://doi.org/10.3390/jmse6020071
Song, X., Li, Y., Huang, R., & Luo, X. (2024, February).
Impeller optimization using a machine learning-based algorithm with dynamic sampling method and flow analysis for an axial flow pump. Journal of Physics: Conference Series (Vol. 2707, No. 1, p. 012154). IOP Publishing.
https://10.1088/1742-6596/2707/1/012154
Song, X., Yu, W., Pan, X., & Luo, X. (2021, May).
Energy balance analysis for a canned motor pump used for heat supply system. Journal of Physics: Conference Series (Vol. 1909, No. 1, p. 012072). IOP Publishing.
https://doi.org/10.1088/1742-6596/1909/1/012072
Stel, H. A. G. N. C., Amaral, G. D. L., Negrao, C. O. R., Chiva, S., Estevam, V., & Morales, R. E. M. (2013). Numerical analysis of the fluid flow in the first stage of a two-stage centrifugal pump with a vaned diffuser.
Journal of Fluids Engineering,
135(7), 071104.
https://doi.org/10.1115/1.4023956
Wang, G. G., & Shan, S. (2006, January).
Review of metamodeling techniques in support of engineering design optimization. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 4255, pp. 415-426).
https://doi.org/10.1115/DETC2006-99412
Wang, W., Osman, M. K., Pei, J., Gan, X., & Yin, T. (2019). Artificial neural networks approach for a multi-objective cavitation optimization design in a double-suction centrifugal pump.
Processes,
7(5), 246.
https://doi.org/10.3390/pr7050246
Xiang, H., Chen, J., Cheng, J., & Song, X. (2022). Blade number selection for a splittered mixed-flow compressor impeller using improved loss model.
International Journal of Turbo & Jet-Engines,
39(4), 549-564.
https://doi.org/10.1515/tjj-2020-0008
Xie, R. S., Tang, F. P., Yang, F., & Xiang, C. (2018, July).
Effect of the flow in blade root-leakage on hydraulic characteristic in axial flow pump system. IOP Conference Series: Earth and Environmental Science (Vol. 163, No. 1, p. 012123). IOP Publishing.
https://doi.org/10.1088/1755-1315/163/1/012123
Yang, F., Li, Z., Fu, J., Lv, Y., Ji, Q., & Jian, H. (2022a). Numerical and experimental analysis of transient flow field and pressure pulsations of an axial-flow pump considering the pump–pipeline interaction.
Journal of Marine Science and Engineering,
10(2), 258.
https://doi.org/10.3390/jmse10020258
Yang, F., Lin, Z., Li, J., Nasr, A., Cong, W., & Li, C. (2022b). Analysis of internal flow characteristics and structure optimization of vertical submersible axial flow pump device.
Advances in Mechanical Engineering,
14(5), 16878132221100641.
https://doi.org/10.1177/16878132221100641
Yuan, Y., & Yuan, S. (2017). Analyzing the effects of splitter blade on the performance characteristics for a high-speed centrifugal pump.
Advances in Mechanical Engineering,
9(12), 1687814017745251.
https://doi.org/10.1177/1687814017745251
Zhang, D., Shi, W., Van Esch, B. B., Shi, L., & Dubuisson, M. (2015). Numerical and experimental investigation of tip leakage vortex trajectory and dynamics in an axial flow pump.
Computers & Fluids,
112, 61-71.
https://doi.org/10.1016/j.compfluid.2015.01.010
Zhang, W., Tang, F., Shi, L., Hu, Q., & Zhou, Y. (2020). Effects of an inlet vortex on the performance of an axial-flow pump.
Energies,
13(11), 2854.
https://doi.org/10.3390/en13112854
Zhao, B., Wang, Y., Chen, H., Qiu, J., & Hou, D. (2015). Hydraulic optimization of a double-channel pump’s impeller based on multi-objective genetic algorithm.
Chinese Journal of Mechanical Engineering,
28(3), 634-640.
https://doi.org/10.3901/CJME.2015.0116.016
Zhao, X., Chen, T., Huang, B., & Wang, G. (2022, April).
Numerical analysis of the cavitating flow in an axial flow waterjet pump with special emphasis on the tip leakage flow and tip leakage vortex. Journal of Physics: Conference Series (Vol. 2217, No. 1, p. 012018). IOP Publishing.
https://doi.org/10.1088/1742-6596/2217/1/012018
Zhao, X., Liu, T., Huang, B., & Wang, G. (2020). Combined experimental and numerical analysis of cavitating flow characteristics in an axial flow waterjet pump.
Ocean Engineering,
209, 107450.
https://doi.org/10.1016/j.oceaneng.2020.107450
Zhu, H., Bo, G., Zhou, Y., Zhang, R., & Cheng, J. (2018). Pump selection and performance prediction for the technical innovation of an axial-flow pump station.
Mathematical Problems in Engineering,
2018.
https://doi.org/10.1155/2018/6543109