Modelling and Optimization of Fluid Frictional Torque in a Single Stage Centrifugal Pump with a Vaned Diffuser Based on RSM, ANN and Desirability Function

Document Type : Regular Article

Authors

Department of Mechanical Engineering, NSUT, New Delhi 100078, India

10.47176/jafm.18.3.2906

Abstract

In a centrifugal pump, the clearance flow is quite common due to the existence of clearance between the casing and impeller. Apart from the clearance, the impeller speed and flow rate have a significant impact on fluid frictional torque. This study uses experimental and numerical methods to investigate these dynamics. The experimental setup includes measurements of fluid frictional torque at various levels of axial clearance (0.6 mm, 1.2 mm, and 1.8 mm), flow rates (8 L/min, 10 L/min, and 12 L/min), and impeller speeds (800 rpm, 1000 rpm, and 1200 rpm). A 3-level, 3-factor factorial design (L27) is employed to systematically examine the impact of these factors on fluid frictional torque. Response Surface Methodology (RSM) and Artificial Neural Networks (ANNs) are utilized to capture complex parameter interactions, with optimization performed using a Desirability Function (DF). The analysis reveals a significant increase in fluid frictional torque with increasing axial clearance, impeller speed, and flow rate. The optimal operational parameters for minimizing fluid frictional torque in the centrifugal pump are identified as    and mm, achieving a minimum fluid frictional torque of 0.499 Nm

Keywords

Main Subjects


Acherjee, B., Mondal, S., Tudu, B., & Misra, D. (2011). Application of artificial neural network for predicting weld quality in laser transmission welding of thermoplastics. Applied Soft Computing11(2), 2548-2555. http://dx.doi.org/10.1016/j.asoc.2010.10.005
Alzubi, J., Nayyar, A., & Kumar, A. (2018, November). Machine learning from theory to algorithms: an overview. Journal of Physics: Conference Series (Vol. 1142, p. 012012). IOP Publishing. https://doi.org/10.1088/1742-6596/1142/1/012012
Chabbi, A., Yallese, M. A., Nouioua, M., Meddour, I., Mabrouki, T., & Girardin, F. (2017). Modeling and optimization of turning process parameters during the cutting of polymer (POM C) based on RSM, ANN, and DF methods. The International Journal of Advanced Manufacturing Technology91, 2267-2290. https://doi.org/ 10.1007/s00170-016-9858-8
Derakhshan, S., Mohammadi, B., & Nourbakhsh, A. (2008). Incomplete sensitivities for 3D radial turbomachinery blade optimization. Computers & Fluids37(10), 1354-1363. https://doi.org/10.1016/j.compfluid.2008.01.002
Ekradi, K., & Madadi, A. (2020). Performance improvement of a transonic centrifugal compressor impeller with splitter blade by three-dimensional optimization. Energy201, 117582. https://doi.org/10.1016/j.energy.2020.117582
Gan, X., Pei, J., Wang, W., Yuan, S., & Lin, B. (2023). Application of a modified MOPSO algorithm and multi-layer artificial neural network in centrifugal pump optimization. Engineering Optimization55(4), 580-598. https://doi.org/10.1080/0305215X.2021.2015585
Gao, Z., Zhu, W., Lu, L., Deng, J., Zhang, J., & Wuang, F. (2014). Numerical and experimental study of unsteady flow in a large centrifugal pump with stay vanes. Journal of Fluids Engineering136(7), 071101. https://doi.org/10.1115/1.4026477
Garcia-Romeu, M. L., Ceretti, E., Fiorentino, A., & Giardini, C. (2010, January). Forming force prediction in two-point incremental forming using Backpropagation neural networks in combination with Genetic Algorithms. International Manufacturing Science and Engineering Conference (Vol. 49477, pp. 99-106). http://dx.doi.org/10.1115/MSEC2010-34142
Ghadimi, B., Nejat, A., Nourbakhsh, S. A., & Naderi, N. (2019). Multi‐objective genetic algorithm assisted by an artificial neural network metamodel for shape optimization of a centrifugal blood pump. Artificial Organs43(5), E76-E93. https://doi.org/10.1111/aor.13366
González, J., & Santolaria, C. (2006). Unsteady flow structure and global variables in a centrifugal pump. ASME. Journal of Fluids Engineering, 128(5): 937–946. https://doi.org/10.1115/1.2234782
Gülich, J. F. (2003). Disk friction losses of closed turbomachine impellers. Forschung im Ingenieurwesen68(2), 87-95. https://doi.org/10.1007/s10010-003-0111-x
Han, X., Kang, Y., Sheng, J., Hu, Y., & Zhao, W. (2020). Centrifugal pump impeller and volute shape optimization via combined NUMECA, genetic algorithm, and back propagation neural network. Structural and Multidisciplinary Optimization61, 381-409. https://link.springer.com/article/10.1007/s00158-019-02367-8
Kaupert, K. A., & Staubli, T. (1999). The unsteady pressure field in a high specific speed centrifugal pump impeller—part I: influence of the volute. ASME. Journal of Fluids Engineering, 121(3), 621–626. https://doi.org/10.1115/1.2823514
Kergourlay, G., Younsi, M., Bakir, F., & Rey, R. (2007). Influence of splitter blades on the flow field of a centrifugal pump: test-analysis comparison. International Journal of Rotating Machinery, 2007(1)  https://doi.org/10.1155/2007/85024
Lippmann, R. P. (1988). An introduction to computing with neural nets. Acm Sigarch Computer Architecture News16(1), 7-25. https://doi.org/10.1145/44571.44572
Liu, H., Wang, K., Yuan, S., Tan, M., Wang, Y., & Dong, L. (2013). Multicondition optimization and experimental measurements of a double-blade centrifugal pump impeller. Journal of Fluids Engineering135(1), 011103. https://doi.org/10.1115/1.4023077
Ma, S. B., Afzal, A., & Kim, K. Y. (2018). Optimization of ring cavity in a centrifugal compressor based on comparative analysis of optimization algorithms. Applied Thermal Engineering, 138, 633-647.. https://doi.org/10.1016/j.applthermaleng.2018.04.04
Massoudi, S., Picard, C., & Schiffmann, J. (2022). Robust design using Mult objective optimisation and artificial neural networks with application to a heat pump radial compressor. Design Science8, e1. https://doi.org/10.1017/dsj.2021.25
Owoyele, O., & Pal, P. (2021a). A novel active optimization approach for rapid and efficient design space exploration using ensemble machine learning. Journal of Energy Resources Technology143(3), 032307. https://doi.org/10.1115/1.4049178
Owoyele, O., & Pal, P. (2021b). A novel machine learning-based optimization algorithm (ActivO) for accelerating simulation-driven engine design. Applied Energy285, 116455. https://doi.org/10.1016/j.apenergy.2021.116455
Pedersen, N., Larsen, P. S., & Jacobsen, C. B. (2003). Flow in a centrifugal pump impeller at design and off-design conditions—part I: particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements. ASME. Journal of  Fluids Engineering, 125(1): 61–72. https://doi.org/10.1115/1.1524585
Pei, J., Gan, X., Wang, W., Yuan, S., & Tang, Y. (2019). Multi-objective shape optimization on the inlet pipe of a vertical inline pump. Journal of Fluids Engineering141(6), 061108. https://doi.org/10.1115/1.4043056
Pei, J., Yuan, S., Benra, F. K., & Dohmen, H. J. (2012). Numerical prediction of unsteady pressure field within the whole flow passage of a radial single-blade pump. ASME, Journal of Fluids Engineering , 134(10). https://doi.org/10.1115/1.4007382
Qiu, J. T., Yang, C. J., Dong, X. Q., Wang, Z. L., Li, W., & Noblesse, F. (2018). Numerical simulation and uncertainty analysis of an axial-flow waterjet pump. Journal of Marine Science and Engineering6(2), 71. https://doi.org/10.3390/jmse6020071
Song, X., Li, Y., Huang, R., & Luo, X. (2024, February). Impeller optimization using a machine learning-based algorithm with dynamic sampling method and flow analysis for an axial flow pump. Journal of Physics: Conference Series (Vol. 2707, No. 1, p. 012154). IOP Publishing. https://10.1088/1742-6596/2707/1/012154
Song, X., Yu, W., Pan, X., & Luo, X. (2021, May). Energy balance analysis for a canned motor pump used for heat supply system. Journal of Physics: Conference Series (Vol. 1909, No. 1, p. 012072). IOP Publishing. https://doi.org/10.1088/1742-6596/1909/1/012072
Stel, H. A. G. N. C., Amaral, G. D. L., Negrao, C. O. R., Chiva, S., Estevam, V., & Morales, R. E. M. (2013). Numerical analysis of the fluid flow in the first stage of a two-stage centrifugal pump with a vaned diffuser. Journal of Fluids Engineering135(7), 071104. https://doi.org/10.1115/1.4023956
Wang, G. G., & Shan, S. (2006, January). Review of metamodeling techniques in support of engineering design optimization. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 4255, pp. 415-426). https://doi.org/10.1115/DETC2006-99412
Wang, W., Osman, M. K., Pei, J., Gan, X., & Yin, T. (2019). Artificial neural networks approach for a multi-objective cavitation optimization design in a double-suction centrifugal pump. Processes7(5), 246. https://doi.org/10.3390/pr7050246
Xiang, H., Chen, J., Cheng, J., & Song, X. (2022). Blade number selection for a splittered mixed-flow compressor impeller using improved loss model. International Journal of Turbo & Jet-Engines39(4), 549-564. https://doi.org/10.1515/tjj-2020-0008
Xie, R. S., Tang, F. P., Yang, F., & Xiang, C. (2018, July). Effect of the flow in blade root-leakage on hydraulic characteristic in axial flow pump system. IOP Conference Series: Earth and Environmental Science (Vol. 163, No. 1, p. 012123). IOP Publishing. https://doi.org/10.1088/1755-1315/163/1/012123
Yang, F., Li, Z., Fu, J., Lv, Y., Ji, Q., & Jian, H. (2022a). Numerical and experimental analysis of transient flow field and pressure pulsations of an axial-flow pump considering the pump–pipeline interaction. Journal of Marine Science and Engineering10(2), 258. https://doi.org/10.3390/jmse10020258
Yang, F., Lin, Z., Li, J., Nasr, A., Cong, W., & Li, C. (2022b). Analysis of internal flow characteristics and structure optimization of vertical submersible axial flow pump device. Advances in Mechanical Engineering14(5), 16878132221100641. https://doi.org/10.1177/16878132221100641
Yuan, Y., & Yuan, S. (2017). Analyzing the effects of splitter blade on the performance characteristics for a high-speed centrifugal pump. Advances in Mechanical Engineering9(12), 1687814017745251. https://doi.org/10.1177/1687814017745251
Zhang, D., Shi, W., Van Esch, B. B., Shi, L., & Dubuisson, M. (2015). Numerical and experimental investigation of tip leakage vortex trajectory and dynamics in an axial flow pump. Computers & Fluids112, 61-71. https://doi.org/10.1016/j.compfluid.2015.01.010
Zhang, W., Tang, F., Shi, L., Hu, Q., & Zhou, Y. (2020). Effects of an inlet vortex on the performance of an axial-flow pump. Energies13(11), 2854. https://doi.org/10.3390/en13112854
Zhao, B., Wang, Y., Chen, H., Qiu, J., & Hou, D. (2015). Hydraulic optimization of a double-channel pump’s impeller based on multi-objective genetic algorithm. Chinese Journal of Mechanical Engineering28(3), 634-640. https://doi.org/10.3901/CJME.2015.0116.016
Zhao, X., Chen, T., Huang, B., & Wang, G. (2022, April). Numerical analysis of the cavitating flow in an axial flow waterjet pump with special emphasis on the tip leakage flow and tip leakage vortex. Journal of Physics: Conference Series (Vol. 2217, No. 1, p. 012018). IOP Publishing. https://doi.org/10.1088/1742-6596/2217/1/012018
Zhao, X., Liu, T., Huang, B., & Wang, G. (2020). Combined experimental and numerical analysis of cavitating flow characteristics in an axial flow waterjet pump. Ocean Engineering209, 107450. https://doi.org/10.1016/j.oceaneng.2020.107450
Zhu, H., Bo, G., Zhou, Y., Zhang, R., & Cheng, J. (2018). Pump selection and performance prediction for the technical innovation of an axial-flow pump station. Mathematical Problems in Engineering2018. https://doi.org/10.1155/2018/6543109