Ahn, J., & Lee, D. (2013).
Aerodynamic characteristics of a micro air vehicle and the influence of propeller location. 31st AIAA Applied Aerodynamics Conference, 1–9.
https://doi.org/10.2514/6.2013-2655
Aminaei, H., Dehghan Manshadi, M., & Mostofizadeh, A. R. (2019). Experimental investigation of propeller slipstream effects on the wing aerodynamics and boundary layer treatment at low Reynolds number.
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,
233(8), 3033–3041.
https://doi.org/10.1177/0954410018793703
Ananda, G. K., Deters, R. W., & Selig, M. S. (2013).
Propeller induced flow effects on wings at low Reynolds numbers. 31st AIAA Applied Aerodynamics Conference, 1–20.
https://doi.org/10.2514/6.2013-3193
Ananda, G. K., Deters, R. W., & Selig, M. S. (2014, June).
Propeller-induced flow effects on wings of varying aspect ratio at low reynolds numbers. 32nd AIAA Applied Aerodynamics Conference, 1–20.
https://doi.org/10.2514/6.2014-2152
Ananda, G. K., Selig, M. S., & Deters, R. W. (2018). Experiments of propeller-induced flow effects on a low-Reynolds-number wing.
AIAA Journal,
56(8), 3279–3294.
https://doi.org/10.2514/1.J056667
Arivoli, D., Dodamani, R., Antony, R., Suraj, C. S., Ramesh, G., & Ahmed, S. (2011, June, 1–10).
Experimental Studies on a Propelled Micro Air Vehicle. 29th AIAA Applied Aerodynamics Conference 2011.
https://doi.org/10.2514/6.2011-3656
Balaji, G., Pillai, S. N., & Senthil Kumar, C. (2017). Wind Tunnel Investigation of Downstream Wake Characteristics on Circular Cylinder with Various Taper Ratios.
Journal of Applied Fluid Mechanics, 10 (Special Issue), 69–77.
https://doi.org/10.36884/jafm.10.SI.28272
Bansal, U., Sinduraa, B. V., Panneerselvam, S., & Santhakumar, S. (2011). Design and Development of a Transitional Micro Air Vehicle. Symposium on Applied Aerodynamics and Design of Aerospace Vehicles (SAROD November - 2011).
Cao, M., Liu, K., Wang, C., Wei, J., & Qin, Z. (2023). Research on the distributed propeller slipstream effect of UAV wing based on the actuator disk method.
Drones,
7(9).
https://doi.org/10.3390/drones7090566
Catalano, F. M. (2004). On the effects of an installed propeller slipstream on wing aerodynamic characteristics.
Acta Polytechnica,
44(3).
https://doi.org/10.14311/562
Chen, G., Chen, B., Li, P., Bai, P., & Ji, C. (2015). Numerical simulation study on propeller slipstream interference of high altitude long endurance unmanned air vehicle.
Procedia Engineering,
99, 361–367.
https://doi.org/10.1016/j.proeng.2014.12.548
Chen, Z., & Yang, F. (2022). Propeller slipstream effect on aerodynamic characteristics of micro air vehicle at low reynolds number.
Applied Sciences (Switzerland),
12(8).
https://doi.org/10.3390/app12084092
Chinwicharnam, K., & Thipyopas, C. (2016). Comparison of wing-propeller interaction in tractor and pusher configuration.
International Journal of Micro Air Vehicles,
8(1), 3–20.
https://doi.org/10.1177/1756829316638206
Durai, A. (2014). Experimental investigation of lift and drag characteristics of a typical MAV under propeller induced flow.
International Journal of Micro Air Vehicles,
6(1), 63–72.
https://doi.org/10.1260/1756-8293.6.1.63
Figat, M., & Piątkowska, P. (2020). Numerical investigation of mutual interaction between a pusher propeller and a fuselage.
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,
0(0), 1–14.
https://doi.org/10.1177/0954410020932796
Furusawa, Y., Kitamura, K., Ikami, T., Nagai, H., & Oyama, A. (2024). Numerical study on aerodynamic characteristics of wing within propeller slipstream at low-reynolds-number.
Transactions of the Japan Society for Aeronautical and Space Sciences,
67(1), 12–22.
https://doi.org/10.2322/tjsass.67.12
Hassanalian, M., Khaki, H., & Khosravi, M. (2015). A new method for design of fixed wing micro air vehicle.
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,
229(5), 837–850.
https://doi.org/10.1177/0954410014540621
Jana, S., Kandath, H., Shewale, M., & Bhat, M. S. (2020). Effect of propeller-induced flow on the performance of biplane micro air vehicle dynamics.
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,
234(3), 716–728.
https://doi.org/10.1177/0954410019883097
Khoshnevis, A. B., Barzenoni, V., & Mamouri, A. R. (2016). Experimental study of parameters and high - order values of velocity in the behind wake of a vehicle model,
Automotive Science and Engineering,
6(4), 2291-2300.
https://www.iust.ac.ir/ijae/article-1-386-en.html.
Liu, Z., Albertani, R., Moschetta, J. M., Xu, M., & Thipyopas, C. (2011). Experimental and computational evaluation of small microcoaxial rotor in hover.
Journal of Aircraft,
48(1), 220–229.
https://doi.org/10.2514/1.C031068
Meng, X., Xu, Z., Chang, M., & Bai, J. (2023). Performance analysis and flow mechanism of channel wing considering propeller slipstream.
Chinese Journal of Aeronautics,
36(11), 165–184.
https://doi.org/10.1016/j.cja.2023.06.022
Null, W., & Shkarayev, S. (2005). Effect of camber on the aerodynamics of adaptive-wing micro air vehicles.
Journal of Aircraft,
42(6), 1537–1542.
https://doi.org/10.2514/1.12401
Rostami, M., & Farajollahi, A. H. (2021). Aerodynamic performance of mutual interaction tandem propellers with ducted UAV.
Aerospace Science and Technology,
108, 106399.
https://doi.org/10.1016/j.ast.2020.106399
Shams, T. A., Shah, S. I. A., Shahzad, A., Javed, A., & Mehmod, K. (2020). Experimental investigation of propeller induced flow on flying wing micro aerial vehicle for improved 6DOF modeling.
IEEE Access,
8, 179626–179647.
https://doi.org/10.1109/ACCESS.2020.3026005
Sharma, P., & Atkins, E. (2019). Experimental investigation of tractor and pusher hexacopter performance. Journal of Aircraft, 56(5), 1920–1934. https://doi.org/10.2514/1.C035319
Slater, J. W., Dudek, J. C., & Tatum, K. E. (2000). The NPARC alliance verification and validation archive. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 251(April), 1005–1012.
https://ntrs.nasa.gov/citations/20000054672
Sudhakar, S., Kumar, C., Arivoli, D., Dodamani, R., & Venkatakrishnan, L. (2013, January 1–10).
Experimental studies of propeller induced flow over a typical micro air vehicle. 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 2013.
https://doi.org/10.2514/6.2013-60
Suresh, V., Premkumar, P. S., & Senthilkumar, C. (2019). Drag reduction of non-circular cylinder at subcritical reynolds numbers.
Journal of Applied Fluid Mechanics,
12(1), 187–194.
https://doi.org/10.29252/jafm.75.253.28686
Teixeira, P. C., & Cesnik, C. E. S. (2019). Propeller effects on the response of high-altitude long-endurance aircraft.
AIAA Journal,
57(10), 4328–4342.
https://doi.org/10.2514/1.J057575
Wang, K., & Zhou, Z. (2022). An investigation on the aerodynamic performance of a hand-launched solar-powered UAV in flying wing configuration.
Aerospace Science and Technology,
129, 107804.
https://doi.org/10.1016/j.ast.2022.107804
Zhang, X., Zhang, W., Li, W., Zhang, X., & Lei, T. (2023). Experimental research on aero-propulsion coupling characteristics of a distributed electric propulsion aircraft.
Chinese Journal of Aeronautics,
36(2), 201–212.
https://doi.org/10.1016/j.cja.2022.07.024
Zhao, S., Li, J., Jiang, Y., Qian, R., & Xu, R. (2022). Investigation of propeller slipstream effects on lateral and directional static stability of transport aircraft.
Engineering Applications of Computational Fluid Mechanics,
16(1), 551–569.
https://doi.org/10.1080/19942060.2021.1997824