Alizadeh, H., Jahangir, M. H., & Ghasempour, R. (2020). CFD-based improvement of Savonius type hydrokinetic turbine using optimized barrier at the low- speed flows.
Ocean Engineering,
202, 1-8.
https://doi.org/10.1016/j.oceaneng.2020.107178
Chen, Y., Guo, P., Zhang, D., Chai, K., Zhao, C., & Li, J. (2022). Power improvement of a cluster of three Savonius wind turbines using the variable-speed control method.
Renewable Energy,
193, 832-842.
https://doi.org/10.1016/j.renene.2022.05.062.
Driss, Z., Jemni, M. A., Chelly, A., & Abid, M. S. (2013). Computational study of a vertical axis water turbine placed in a hydrodynamic test bench.
International Journal of Mechanics and Applications,
3(4), 98–104.
https://doi.org/10.5923/j.mechanics.20130304.06
Elbatran, A. H., Ahmed, Y. M., & Shehata, A. S. (2017). Performance study ofducted nozzle Savonius water turbine, comparison with conventional Savonius turbine.
Energy,
134, 566-584.
https://doi.org/10.1016/j.energy.2017.06.041
Golecha, K., Eldho, T. I., & Prabhu, S. V. (2012). Performance study of modified Savonius water turbine with two deflector plates.
International Journal of Rotating Machinery, 1-12.
https://doi.org/10.1155/2012/679247
Kolekar, N., & Banerjee, A. (2015). Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects. Applied Energy, 148, 121-133.
Loureiro, J. B. R., & Silva Freire, A. P. (2005). Experimental investigation of turbulent boundary layers over steep two-dimensional elevations.
Journal of Brazilian Society of Mechanical Sciences and Engineering, 27(4), 329-344.
https://doi.org/10.1590/S1678-58782005000400001
Mohamed, M. H., Ali, A. M., & Hafiz, A. A. (2015). CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter.
Engineering Science and Technology, an International Journal,
18(1), 1–13.
https://doi.org/10.1016/j.jestch.2014.08.002
Mohamed, M. H., Janiga, G., Pap, E., & Thevenin, D. (2010). Optimization of savonius turbines using an obstacle shielding the returning blade.
Renewable Energy,
35(11), 2618–2626.
https://doi.org/10.1016/j.renene.2010.04.007
Mohamed, M. H., Janiga, G., Pap, E., & Thevenin, D. (2011a). Multi-objective optimization of the airfoil shape of Wells turbine used for wave energy conversion.
Energy, 36(1), 438-446.
https://doi.org/10.1016/j.energy.2010.10.021
Mohamed, M. H., Janiga, G., Pap, E., & Thevenin, D. (2011b). Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade.
Energy Conversion and Management,
52(1), 236–42.
https://doi.org/10.1016/j.enconman.2010.06.070
Mosbahi, M., Ayadi, A., Chouaibi, Y., Driss, Z., & Tucciarelli, T. (2019a). Performance study of a helical Savonius hydrokinetic turbine with a new deflector system design.
Energy Conversion and Management,
194, 55–74.
https://doi.org/10.1016/j.enconman.2019.04.080
Mosbahi, M., Ayadi, A., Mabrouki, I., Driss, Z., Tucciarelli, T., & Abid, M. S. (2019b). Effect of the converging pipe on the performance of a lucid spherical rotor.
Arabian Journal for Science and Engineering, 44(2), 1583–600.
https://doi.org/10.1007/s13369-018-3625-0
Nag, A. K., & Sarkar, S. (2021). Techno-economic analysis of a micro-hydropower plant consists of hydrokinetic turbines arranged in different array formations for rural power supply.
Renewable Energy,
179, 475-487.
https://doi.org/10.1016/j.renene.2021.07.067.
Nakajima, M., Iio, S., & Ikeda, T. (2008). Performance of Savonius rotor for environmentally friendly hydraulic turbine.
Journal of Fluid Science and Technology,
3(3), 420–429.
https://doi.org/10.1299/jfst.3.420
Patel, V., Bhat, G., Eldho, T. I., & Prabhu, S. V. (2017). Influence of overlap ratio and aspect ratio on the performance of Savonius hydrokinetic turbine.
International Journal of Energy Research,
41, 829–844.
https://doi.org/10.1002/er.3670
Patel, V., Eldho, T. I., & Prabhu, S. V. (2018). Theoretical study on the prediction of the hydrodynamic performance of a Savonius turbine based on stagnation pressure and impulse momentum principle.
Energy Conversion and Management,
168, 545-563.
https://doi.org/10.1016/j.enconman.2018.04.065
Patel, V., Eldho, T. I., & Prabhu, S. V. (2019). Velocity and performance correction methodology for hydrokinetic turbines experimented with different geometry of the channel.
Renewable Energy,
131, 1300-1317.
https://doi.org/10.1016/j.renene.2018.08.027
Riglin, J., Schleicher, W. C., Liu, I. H., & Oztekin, A. (2015). Characterization of a micro-hydrokinetic turbine in close proximity to the free surface.
Ocean Engineering, 110, 270–280.
https://doi.org/10.1016/j.oceaneng.2015.10.026
Roy, S., & Saha, U. K. (2013). Computational study to assess the influence of overlap ratio on static torque characteristics of a vertical axis wind turbine.
Procedia Engineering,
51, 694–702.
https://doi.org/10.1016/j.proeng.2013.01.099
Saini, G., & Saini, R. P. (2018). A Numerical analysis to study the effect of radius ratio and attachment angle on hybrid hydrokinetic turbine performance.
Energy for Sustainable Development,
47, 94–106.
https://doi.org/10.1016/j.esd.2018.09.005
Sarma, N. K., Biswas, A., & Misra, R. D. (2014). Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power.
Energy Conversion and Management,
83, 88–98.
https://doi.org/10.1016/j.enconman.2014.03.070
Shashikumar, C. M., Hindasageri, V., & Madav, V. (2021a, February).
CFD investigation of unsteady three-dimensional savonius hydrokinetic turbine in irrigation channel with varying positions for hydro power application. AIP Conference Proceedings. AIP Publishing.
https://doi.org/10.1063/5.0036472.
Shashikumar, C. M., Vijaykumar, H., & Vasudeva, M. (2021b). Numerical investigation of conventional and tapered Savonius hydrokinetic turbines for low-velocity hydropower application in an irrigation channel.
Sustainable Energy Technologies and Assessment Journal,
43; 100871 (Online).
https://doi.org/10.1016/j.seta.2020.100871.
Singh, S. V., & Kumar, P. (2022). Study of flow characteristics of a savonius turbine inside nozzle diffuser duct.
Journal of Engineering Research.
https://doi.org/10.36909/jer.15977.
Talukdar, P. K., Sardar, A., Kulkarni, V., & Saha, U. K. (2018). Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations.
Energy Conversion and Management, 158, 36-49.
https://doi.org/10.1016/j.enconman.2017.12.011
Thakur, N., Biswas, A., Kumar, Y., & Basumatary, M. (2019). CFD analysis of performance improvement of the Savonius water turbine by using an impinging jet duct design.
Chinese Journal of Chemical Engineering,
27(4), 794-801.
https://doi.org/10.1016/j.cjche.2018.11.014
Wahyudi, B., Soeparman, S., Wahyudi, S., & Denny, W. (2013). A simulation study of Flow and Pressure distribution patterns in and around of Tandem Blade Rotor of Savonius (TBS) Hydrokinetic turbine model.
Journal of Clean Energy Technologies,
1, 286–291.
https://doi.org/10.7763/JOCET.2013.V1.65
Zhao, Z., Zheng, Y., Xu, X., Liu, W., & Hu, G. (2009). Research on the improvement of the performance of Savonius rotor based on numerical study.
International Conference on Sustainable Power Generation and Supply, 1–6.
https://doi.org/10.1109/SUPERGEN.2009.5348197