Behavior of a Glycerol Aqueous Droplet Impacting a Thin Water Film

Document Type : Regular Article

Authors

1 Beijing University of Chemical Technology, Beijing 100029, China

2 Science and Technology on Space Physical Laboratory, Beijing 100076, China

10.47176/jafm.18.3.2874

Abstract

The dynamic behavior of a glycerol aqueous droplet impacting on a thin water film was experimentally investigated with a high-speed camera. Numerous splash behaviors with different impact velocities (2.0-4.5 m/s), liquid film thicknesses (140-700 μm) and glycerol solution concentrations (30 wt%, 60 wt% and 80 wt%) were statistically analyzed, and finally classified based on morphological features. The laser-induced fluorescence images illustrate that the prompt splash secondary droplets mainly originated from the thin water film, while the components of delayed splash secondary droplets came from both the glycerol aqueous droplet and the thin water film. The results show that increasing viscosity suppresses prompt splash,  inhibits the crown expansion and accelerates the crown collapse, while decreasing droplet viscosity facilitates prompt splash. The decreasing film thickness promotes passive delayed splash and increases the crown height. A splash morphology regime map was presented based on Weber number, dimensionless film thickness and solution mass concentration, delineating a threshold between prompt splash and coalescence. It also found that the occurrence of crown lamella rupture is sensitive to the film thickness and We.

Keywords

Main Subjects


Bernard, R., Baumgartner, D., Brenn, G., Planchette, C., Weigand, B., & Lamanna, G. (2020). Miscibility and wettability: how interfacial tension influences droplet impact onto thin wall films. Journal of Fluid Mechanics, 908, A36. https://doi.org/10.1017/jfm.2020.944
Che, Z., & Matar, O. K. (2018). Impact of droplets on immiscible liquid films. Soft Matter, 14(9), 1540-1551. https://doi.org/10.1039/C7SM02089A
Chen, N., Chen, H., & Amirfazli, A. (2017). Drop impact onto a thin film: Miscibility effect. Physics of Fluids, 29(9), 092106. https://doi.org/10.1063/1.5001743
Cossali, G. E., Coghe, A. & Marengo, M. (1997). The impact of a single drop on a wetted solid surface. Experimental in Fluids, 22(6), 463-472. https://doi.org/10.1007/s003480050073
Cossali, G. E., Marengo, M., Coghe, A., & Zhdanov, S. (2004). The role of time in single drop splash on thin film. Experiments in Fluids, 36(6), 888-900. https://doi.org/10.1007/s00348-003-0772-0
Ersoy, N. E., & Eslamian, M. (2019). Capillary surface wave formation and mixing of miscible liquids during droplet impact onto a liquid film. Physics of Fluids, 31(1), 012107. https://doi.org/10.1063/1.5064640
Ersoy, N. E., & Eslamian, M. (2020). Phenomenological study and comparison of droplet impact dynamics on a dry surface, thin liquid film, liquid film and shallow pool. Experimental Thermal and Fluid Science, 112, 109977. https://doi.org/10.1016/j.expthermflusci.2019.109977
Geppert, A., Terzis, A., Lamanna, G., Marengo, M., & Weigand, B. (2017). A benchmark study for the crown-type splashing dynamics of one- and two-component droplet wall–film interactions. Experiments in Fluids, 58, 172. https://doi.org/10.1007/s00348-017-2447-2
Guo, J., Dai, S., & Dai, Q. (2010). Experimental research on the droplet impacting on the liquid film. Acta Physica Sinica, 59(04), 2601-2609. https://wulixb.iphy.ac.cn/en/article/doi/10.7498/aps.59.2601
Guo, Y., Lian, Y., & Sussman, M. (2016). Investigation of drop impact on dry and wet surfaces with consideration of surrounding air. Physics of Fluids, 28(7), 073303. https://doi.org/10.1063/1.4958694
Guo, Y., Wei, L., Liang, G., & Shen, S. (2014). Simulation of droplet impact on liquid film with CLSVOF. International Communications in Heat and Mass Transfer, 53, 26-33. https://doi.org/10.1016/j.icheatmasstransfer.2014.02.006
Josserand, C., Ray, P., & Zaleski, S. (2016). Droplet impact on a thin liquid film: anatomy of the splash. Journal of Fluid Mechanics, 802, 775-805. https://doi.org/10.1017/jfm.2016.468
Kittel, H. M., Roisman, I. V., & Tropea, C. (2017, September 6-8). Splashing of a very viscous liquid drop impacting onto a solid wall wetted by another liquid. ILASS-Europe 2017. 28th Conference on Liquid Atomization and Spray Systems, Valencia, Spain. https://pdfs.semanticscholar.org/585c/ece6d57800d94226d3babee63728f50b702f.pdf
Kittel, H. M., Roisman, I. V., & Tropea, C. (2018). Splash of a drop impacting onto a solid substrate wetted by a thin film of another liquid. Physical Review Fluids, 3, 073601. https://doi.org/10.1103/PhysRevFluids.3.073601
Lamanna, G., Geppert, A., Bernard, R., & Weigand, B. (2022). Drop impact onto wetted walls: an unsteady analytical solution for modelling crown spreading. Journal of Fluid Mechanics, 938, A34. https://doi.org/10.1017/jfm.2022.69
Lee, J. B., & Lee, S. H. (2011). Dynamic wetting and spreading characteristics of a liquid droplet impinging on hydrophobic textured surfaces. Langmuir, 27(11), 65-73. https://doi.org/10.1021/la104829x
Liang, G., Guo, Y., Shen, S., & Yang, Y. (2013). Crown behavior and bubble entrainment during a drop impact on a liquid film. Theoretical and Computational Fluid Dynamics, 28(2), 159-170. https://doi.org/10.1007/s00162-013-0308-z
Liang, G., Li, L., Chen, L., Zhou, S., & Shen, S. (2021). Impact of droplet on flowing liquid film: Experimental and numerical determinations. International Communications in Heat and Mass Transfer, 126, 105459. https://doi.org/10.1016/j.icheatmasstransfer.2021.105459
Manzello, S. L., & Yang, J. C. (2002). An experimental study of a water droplet impinging on a liquid surface. Experiments in Fluids, 32(5), 580-589. https://doi.org/10.1007/s00348-001-0401-8
Motzkus, C., Gensdarmes, F., & Géhin, E. (2009). Parameter study of microdroplet formation by impact of millimetre-size droplets onto a liquid film. Journal of Aerosol Science, 40(8), 680-692. https://doi.org/10.1016/j.jaerosci.2009.04.001
Nikolopoulos, N., Theodorakakos, A., & Bergeles, G. (2005). Normal impingement of a droplet onto a wall film: a numerical investigation. International Journal of Heat and Fluid Flow, 26(1), 119-132. https://doi.org/10.1016/j.ijheatfluidflow.2004.06.002
Okawa, T., Kawai, K., Kubo, K., & Kitabayashi, S. (2022). Fundamental characteristics of secondary drops produced by early splash during single-drop impingement onto a thick liquid film. Experimental Thermal and Fluid Science, 131, 110533. https://doi.org/10.1016/j.expthermflusci.2021.110533
Okawa, T., Kubo, K., Kawai, K., & Kitabayashi, S. (2021). Experiments on splashing thresholds during single-drop impact onto a quiescent liquid film. Experimental Thermal and Fluid Science, 121. 110279. https://doi.org/10.1016/j.expthermflusci.2020.110279
Okawa, T., Shiraishi, T., & Mori, T. (2006). Production of secondary drops during the single water drop impact onto a plane water surface. Experiments in Fluids, 41(6), 965-974. https://doi.org/10.1007/s00348-006-0214-x
Rioboo, R., Bauthier, C., Conti, J., Voue, M., & De Coninck, J. (2003). Experimental investigation of splash and crown formation during single drop impact on wetted surfaces. Experiments in Fluids, 35(6), 648-652. https://doi.org/10.1007/s00348-003-0719-5
Shaikh, S., Toyofuku, G., Hoang, R., & Marston, J. O. (2018). Immiscible impact dynamics of droplets onto millimetric films. Experiments in Fluids, 59(1), 7. https://doi.org/10.1007/s00348-017-2461-4
Stumpf, B., Roisman, I. V., Yarin, A. L., & Tropea, C. (2023). Drop impact onto a substrate wetted by another liquid: corona detachment from the wall film. Journal of Fluid Mechanics, 956, A10. https://doi.org/10.1017/jfm.2022.1060
Thoroddsen, S., Etoh, T., & Takehara, K. (2006). Crown breakup by a thousand holes. Physics of Fluids, 18, 091110. https://doi.org/10.1063/1.2336802
Uchida, R., Tanaka, D., Noda, T., Okamoto, S., Ozawa, K., & Ishima, T. (2015). Impingement behavior of fuel droplets on oil film. SAE Technical Papers, 01, 0913. https://doi.org/10.4271/2015-01-0913
Vander Wal, R. L., Berger, G. M., & Mozes, S. D. (2005). Droplets splashing upon films of the same fluid of various depths. Experiments in Fluids, 40(1), 33-52. https://doi.org/10.1007/s00348-005-0044-2
Wang, A. B., & Chen, C. C. (2000). Splashing impact of a single drop onto very thin liquid films. Physics of Fluids, 12(9), 2155-2158. https://doi.org/10.1063/1.1287511
Weiss, D. A., & Yarin, A. L. (1999). Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation. Journal of Fluid Mechanics, 385, 229–254. https://doi.org/10.1017/S002211209800411X
Wu, Y., Wang, Q., & Zhao, C. Y. (2020). Three-Dimensional droplet splashing dynamics measurement with a stereoscopic shadowgraph system. International Journal of Heat and Fluid Flow, 83, 108576. https://doi.org/10.1016/j.ijheatfluidflow.2020.108576
Yeganehdoust, F., Attarzadeh, R., Karimfazli, I., & Dolatabadi, A. (2020). A numerical analysis of air entrapment during droplet impact on an immiscible liquid film. International Journal of Multiphase Flow, 124, 103175. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103175
Zhang, H., & Liu, Q. (2020). Numerical investigation on performance of moisture separator: Experimental validation, applications and new findings. Annals of Nuclear Energy, 142, 107362. https://doi.org/10.1016/j.anucene.2020.107362
Zhu, J., Tu, C., Lu, T., Luo, Y., Zhang, K., & Chen, X. (2021). Behavior of a water droplet impacting a thin water film. Experiments in Fluids, 62, 143. https://doi.org/10.1007/s00348-021-03245-0