Numerical Investigation of Impinging Planar Shock Wave Interaction with Axisymmetric Slender Body

Document Type : Regular Article

Authors

Department of Space Engineering and Rocketry, Birla Institute of Technology, Mesra, Ranchi, 835215, India

10.47176/jafm.18.3.2768

Abstract

Shock Wave Boundary Layer Interactions represent a complex flow feature combining high-speed inertial force - dominated flows with low-speed viscous force dominated regions. In this research, planar oblique shock impingement on finned missile body (slender body) have been studied, involving a complex flow field of shocks and expansion waves. Computational studies are used to perform quantitative and qualitative analysis of multi body configurations and investigate the associated flow physics. There is change in induced forces and moments of finned body with change in location of shock impingement, due to the combined effect of enhanced compression, expansion and flow pitch angle on different regions of the missile. For fixed lateral separation between the bodies, changes in coefficient of forces and moments of missile body are very small for shock impingement locations close to fin leading edge. The fins contribute about 50-60% to coefficient of forces and moments of finned missile body. With change in angle of incidence, there is change in polarity of forces and moments illustrating extreme sensitivity of missile body to location of shock impingement, which is due to the combined effect of enhanced compression and expansion on different regions of the missile.

Keywords

Main Subjects


Alvi, F. S., & Settles, G. S. (1992). Physical model of swept shock wave/boundary layer interaction flowfield, AIAA Journal, 30(9), 2252-2258. https://doi.org/10.2514/3.11212
Ansys (2020). Introduction to Fluent, ANSYS Fluent Theory Manual.
Brosh, A., Kussoy, M. I., & Hung, C. M. (1985). Experimental and numerical investigation of a shock wave impingementon a cylinder. AIAA Journal, 23(6), 840-846. https://doi.org/10.2514/3.8996
Cenko, A., & Waskiewicz, J. (1983). Recent improvements in prediction techniques for supersonic weapon separation. Journal of Aircraft, 20(8), 659-666. https://doi.org/10.2514/3.44926
Chaplin, R., MacManus, D., Leopold, F., Martinez, B., Gauthier, T., & Birch. T. (2011). Computational and experimental investigation into aerodynamic interference between slender bodies in supersonic flow. Computers & Fluids. 50, 155–174. https://doi.org/10.1016/j.compfluid.2011.07.009
Dolling, D. S. (2001). Fifty years of shock-wave boundary layer interaction research: what next?, AIAA Journal, 39(8), 1517-1531. https://doi.org/10.2514/2.1476
Gai, S. L., & Teh, S. L. (2000). Interaction between a conical shock wave and a planar oundary layer. AIAA Journal, 38(5), 804-811. https://doi.org/10.2514/2.1060
Ijas Muhammed, V V., Shamsia Banu, N., Suryan, A., Lijo, V., Simurda, D. & Kim, H. D. (2024). Computational study of flow separation in truncated ideal contour nozzles under high-altitude conditions. International Journal of Fluid Engineering, 1, 013101. https://doi.org/10.1063/5.0190399
Jin, Y. & V. Kuznetsov, A. (2024). Multiscale modeling and simulation of turbulent flows in porous media. International Journal of Fluid Engineering, 1, 010601. https://doi.org/10.1063/5.0190279
Knight, D. D., Horstman, C. C., Shapey, B., & Bogdonoff, S. (1987). Structure of supersonic turbulent flow past a sharp fin. AIAA Journal, 25(10), 1331-1337. https://doi.org/10.2514/3.9787
Kussoy, M. I., Viegas, J. R., & Horstman, C. C. (1980). Investigation of a three-dimensional shock wave separated boundary layer. AIAA Journal, 18(12), 1477-1484. https://doi.org/10.2514/3.50907
Newman, G., Fulcher, K., Ray, R., & Pinney, M. (1992). On the aerodynamics/dynamics of store separation from a hypersonic aircraft. 10th AIAA Applied Aerodynamics Conference, Palo Alto, CA, U.S.A. https://doi.org/10.2514/6.1992-2722
Pickles, J. D., Mettu, B. R., Subbareddy, P. K., & Narayanaswamy, V. (2017). Sharp-Fin Induced Shock Wave/Turbulent Boundary Layer Interactions in an Axisymmetric Configuration. 47th AIAA Fluid Dynamics Conference, Denver, Colorado. https://doi.org/10.2514/6.2017-4314 AIAA 2017-4314
Pickles, J. D., Subbareddy, P. K., & Narayanaswamy, V. (2016). Sharp-Fin Induced Shock Wave/Turbulent Boundary Layer Interactions in an Axisymmetric Configuration. 46th AIAA Fluid Dynamics Conference, Washington, D.C. https://doi.org/10.2514/6.2016-3340
Pointwise (2019). Pointwise user manual, V18.3, Pointwise, Texas, USA.
Robertson, G., Kumar, R., Eymann, T., & Morton, S. (2015). Experimental and Numerical Study of Shock-Wave Boundary Layer Interactions on an Axisymmetric Body. 45th AIAA Fluid Dynamics Conference, Dallas, TX. https://doi.org/10.2514/6.2015-2935
Sawchuk, S. P., & Zamir, M. (1992). Boundary layer on a circular cylinder in axial flow. International Journal of Heat and Fluid Flow. 13(2), 184-188. https://doi.org/10.1016/0142-727X(92)90026-6
Stephen, E., Farnsworth, J. A. N., Porter, C. O., Decker, R., McLaughlin, T., & Dudley, J. G. (2013). Impinging Shock-Wave Boundary-Layer Interactions on a Three-Dimensional Body. 43rd AIAA Fluid Dynamics Conference, San Diego, CA. https://doi.org/10.2514/6.2013-2733
Tutty, O. R., Price, W. G., & Parsons, A. T. (2002). Boundary layer flow on a long thin cylinder. Physics of Fluids, 14(2), 628-637. http://dx.doi.org/10.1063/1.1427921
Waskiewicz, J. D., DeJongh, J. E., & Cenko, A. (1983). Application of panel methods to external stores at supersonic speeds. Journal of Aircraft, 20(2), 153- 158. https://doi.org/10.2514/3.44844
Wilcox, F. J. Jr. (1995). Separation characteristics of generic stores from lee side of an inclined flat plate at Mach 6. NASA TM 4652.
Zheltovodov, A. A. (1982). Regimes and properties of three-dimensional separation flows initiated by skewed compression shocks. Journal of Applied Mechanics and Technical Physics, 23(3), 413-418. https://doi.org/10.1007/BF00910085