Abeyaratne, R., & Horgan, C. O. (1985). Initiation of localized plane deformations at a circular cavity in an infinite compressible nonlinearly elastic medium.
Journal of Elasticity,
15, 243–256.
https://doi.org/10.1007/bf00041423
Aquelet, N., & Souli, M. (2004, 25 July).
Fluid-structure coupling in a water-wedge impact problem. [ASME/JSME 2004 Pressure Vessels and Piping Conference–San Diego, California, USA]. Emerging Technology in Fluids, Structures, and Fluid Structure Interactions. (pp. 91–99).
https://doi.org/10.1115/PVP2004-2887
Aristoff, J. M., Truscott, T. T., Techet, A. H., & Bush, J. W. (2009). The water entry of decelerating spheres.
Physics of Fluids,
22, 032102.
https://doi.org/10.1063/1.3309454
Belden, J. L., Hurd, R. C., Jandron, M. A., Bower, A. F., & Truscott, T. T. (2016). Elastic spheres can walk on water.
Nature Communications,
7, 10551
https://doi.org/10.1038/ncomms10551
Belden, J. L., Speirs, N. B., Hellum, A. M., Jones, M., Paolero, A. J., & Truscott, T. T. (2023). Water entry of cups and disks.
Journal of Fluid Mechanics,
963, A14.
https://doi.org/10.1017/jfm.2023.330
Blatz, P. J., & Ko, W. (1962). Application of finite elastic theory to the deformation of rubbery materials.
Transactions of The Society of Rheology,
6 (1): 223–252.
https://doi.org/10.1122/1.548937
Chabokpour, J., & Azamathulla, H. M. (2022). Numerical simulation of pollution transport and hydrodynamic characteristics through the river confluence using FLOW 3D.
Water Supply,
22(10), 7821-7832.
https://doi.org/10.2166/ws.2022.237
Chang, B., Croson, M., Straker, L., Gart, S. W., Dove, C., Gerwin, J. A., & Jung, S. (2016). How seabirds plunge-dive without injuries.
Proceedings of the National Academy of Sciences,
113(43), 12006–12011.
https://doi.org/10.1073/pnas.1608628113
Duclaux, V., Caille, F., Duez, C., Ybert, C., Bocquet, L., & Clanet, C. (2007). Dynamics of transient cavities.
Journal of Fluid Mechanics,
591, 1–19.
https://doi.org/10.1017/S0022112007007343
Gekle, S., van der Bos, A., Bergmann, R., van der Meer, D., & Lohse, D. (2006). Noncontinuous froude number scaling for the closure depth of a cylindrical cavity.
Physical Review Letters,
100(8), 084502.
https://doi.org/10.1103/physrevlett.100.084502
Hurd, R. C., Belden, J. L., Jandron, M. A., Tate Fanning, D., Bower, A. F., & Truscott, T. T. (2017). Water entry of deformable spheres.
Journal of Fluid Mechanics,
824, 912–930.
https://doi.org/10.1038/ncomms10551
Jandron, M. A., Hurd, R. C., Belden, J. L., Bower, A. F., Fennell, W. A., & Truscott, T. T. (2014). Modeling of hyperelastic water-skipping spheres using abaqus/explicit. SIMULIA Community Conference.
Kross, D. A., Kiefling, L. A., Murphy, N. C., & Rawls, E. A. (1983, May 02– May 04).
Space Shuttle solid rocket booster initial water impact loads and dynamics-Analysis, tests, and flight experience. [American Institute of Aeronautics and Astronautics 24th Structures, Structural Dynamics and Materials Conference–Lake Tahoe]. 24th Structures, Structural Dynamics and Materials Conference.
https://doi.org/10.2514/6.1983-956
Lane, B. A., Harmon, K. A., Goodwin, R. L., Yost, M. J., Shazly, T., & Eberth, J. F. (2018). Constitutive modeling of compressible type-I collagen hydrogels.
Medical Engineering & Physics,
53, 39–48.
https://doi.org/10.1016/j.medengphy.2018.01.003
Machovsky-Capuska, G. E., Howland, H. C., Raubenheimer, D., Vaughn-Hirshorn, R., Würsig, B., Hauber, M. E., & Katzir, G. (2012). Visual accommodation and active pursuit of prey underwater in a plunge-diving bird: the Australasian gannet.
Proceedings of the Royal Society B: Biological Sciences,
279(1745), 4118-4125. https://doi.org/
10.1098/rspb.2012.1519
May, A., & Woodhull, J. C. (1948). Drag coefficients of steel spheres entering water vertically.
Journal of Applied Physics,
19, 1109–1121.
https://doi.org/10.1063/1.1715027
McGehee, J. R., Hathaway, M. E., & Vaughan Jr, V. L. (1959). Water-landing characteristics of a reentry capsule (No. NASA-MEMO-5-23-59L).
Mohammadpour, R., Ghani, A. A., & Azamathulla, H. M. (2013). Numerical modeling of 3-D flow on porous broad crested weirs.
Applied Mathematical Modelling,
37(22), 9324-9337.
https://doi.org/10.1016/j.apm.2013.04.041
Rabbi, R., Speirs, N. B., Kiyama, A., Belden, J. L., & Truscott, T. T. (2020). Impact force reduction by consecutive water entry of spheres.
Journal of Fluid Mechanics,
915, A55.
https://doi.org/10.1017/jfm.2020.1165
Renda, F., Giorgio-Serchi, F., Boyer, F., & Laschi, C. (2015, May). Locomotion and elastodynamics model of an underwater shell-like soft robot. 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1158-1165). IEEE.
Ropert-Coudert, Y., Grémillet, D., Ryan, P., Kato, A., Naito, Y., & Le Maho, Y. (2004). Between air and water: the plunge dive of the Cape Gannet Morus capensis.
Ibis,
146(2), 281-290.
https://doi.org/10.1111/j.1474-919x.2003.00250.x
Souli, M., Messahel, R., Cohen, B., & Aquelet, N. (2014). LS-DYNA Users conference session: fluid structure interaction 1-1 numerical investigation of phase change and cavitation effects in nuclear power plant pipes. Engineering, Environmental Science, Physics.
Speirs, N. B., Langley, K. R., Pan, Z., Truscott, T. T., & Thoroddsen, S. T. (2021). Cavitation upon low-speed solid–liquid impact.
Nature Communications,
12, 7250.
https://doi.org/10.1038/s41467-021-27383-5
Tang, B., Xu, J., Jia, Y., & Yu, J. (2017). Short fiber-reinforced EPDM coating film superelastic constitutive model.
Chinese Journal of Mechanics,
49(2), 317-323. https://doi.org/
10.6052/0459-1879-16-324
Tang, Z., Luo, Q., Leng, X., Liu, P., & Luo, J. (2016). Surge detecting with a spherical sensor. Sensor Review, 36(2), 130-139. https://doi.org/10.1108/SR-12-2014-0765
Thomas, W. L. (1975). Ditching investigation of a 1/20-scale model of the space shuttle orbiter (No. NASA-CR-2593). NASA.
Thompson, W. C., United States., & Langley Research Center. (1965). Dynamic model investigation of the landing characteristics of a manned spacecraft. Washington, D.C.: National Aeronautics and Space Administration.
Truscott, T. T., Epps, B. P., & Techet, A. H. (2012). Unsteady forces on spheres during free-surface water entry.
Journal of Fluid Mechanics,
704, 173–210.
https://doi.org/10.1017/jfm.2012.232
Vaughan, V. L., & United States. (1959). Water landing impact accelerations for three models of reentry capsules. Washington, D.C.: National Aeronautics and Space Administration.
Wang, T. M., Yang, X. B., Liang, J. H., Yao, G. C., & Zhao, W. (2013). CFD based investigation on the impact acceleration when a gannet impacts with water during plunge diving.
Bioinspiration & Biomimetics, 8.036006.
https://doi.org/10.1088/1748-3182/8/3/036006
Wehner, M., Truby, R. L., Fitzgerald, D. J., Mosadegh, B., Whitesides, G. M., Lewis, J. A., & Wood, R. J. (2016). An integrated design and fabrication strategy for entirely soft, autonomous robots.
Nature,
536(7617), 451-455.
https://doi.org/10.1038/nature19100
Xu, L., Troesch, A., & Peterson, R. (1999). Asymmetric hydrodynamic impact and dynamic response of vessels.
Journal of Offshore Mechanics and Arctic Engineering-transactions of The Asme,
121, 83–89.
https://doi.org/10.1115/1.2830082
Yang, L., Sun, T., Wei, Y., Wang, C., Xia, W., & Wang, Z. (2021a). Hydroelastic analysis of water entry of deformable spheres.
Journal of Hydrodynamics,
33, 821–832.
https://doi.org/10.1007/s42241-021-0065-1
Yang, L., Wei, Y., Wang, C., Xia, W., & Li, J. (2020a). Numerical investigations on the deformation styles and stress distributions of hyperelastic/viscoelastic spheres during water entry.
Journal of Applied Physics,
127(6), 064901.
https://doi.org/10.1063/1.5130069
Yang, L., Wei, Y., Wang, C., Xia, W., Li, J., & Chen, C. (2020b). Numerical study on the deformation behaviors of elastic spheres during water entry.
Journal of Fluids and Structures,
99, 103167.
https://doi.org/10.1016/j.jfluidstructs.2020.103167
Yang, L., Wei, Y., Wang, C., Xia, W., Li, J., Wang, Z., & Zhang, D. (2021b). Dynamics of the cavity evolution during vertical water entry of deformable spheres.
Physics of Fluids,
33, 065106.
https://doi.org/10.1063/5.0051401
Zhang, L., Wang, Z., & Jia, H. (2023). Effect of wave phases and heights on supercavitation flow field and dynamic characteristics of successively fired high-speed projectiles.
Journal of Marine Science and Engineering,
11, 629. (1–17).
https://doi.org/10.3390/jmse11030629