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ABSTRACT 

This paper presents two-dimensional numerical simulations of the self-excited 
forces on two bridge decks: a streamlined one (Great Belt Bridge) and a bluff 
one (Sunshine Skyway Bridge). It employs forced vibration simulations using 
the Open-source code OpenFOAM for flutter derivative identifications. A wide 
sensitivity study is conducted on the effects of turbulence model, Reynolds 
number, vibration amplitude, and wind attack angle on flutter derivative 
identifications. The key findings are as follows. (i) k-ε model shows its 
superiority in simulating self-excited forces on a bluff bridge deck, while SST 
k-ω exhibits advantages in the case of a streamlined bridge deck. (ii) Compared 
with a streamlined bridge deck, flutter derivatives of a bluff bridge deck are more 
sensitive to the Reynolds number due to the generation of more vortices resulting 
from flow separation. Both the generation and convection of the vortices are 
largely affected by the Reynolds number. (iii) Flutter derivatives of the bridge 
decks can be considered as constants if the vertical amplitude ratio and torsional 
amplitude are lower than 0.025 and 2°, respectively. Increasing vibration 
amplitude may result in remarkable variations of some flutter derivatives. (iv) 
The angle of attack changes the flutter derivatives by affecting the wind pressure 
distribution on the bridge surface. Its impact on a bluff bridge deck is larger than 
on a streamlined bridge deck. Besides presenting a detailed study of identifying 
flutter derivatives using OpenFOAM, this research provides valuable references 
for setting reasonable values of the investigated factors for identifying flutter 
derivatives of bluff and streamlined bridge decks. 
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1. INTRODUCTION 

 Flutter in bridges is a self-excited vibration caused by 

the interaction of aerodynamic forces and structural 

vibrations. It occurs when wind speed reaches a critical 

level, leading to dynamic coupling and increasing 

vibration amplitudes, potentially resulting in instability or 

structural failure. Flutter derivatives play a crucial role in 

aerodynamic stability analysis, helping engineers predict 

the onset of flutter and assess bridge stability under 

varying wind conditions. Since the wind-induced failure 

of the original Tacoma bridge (Amman et al., 1941), 

extensive research has been carried out on the 

aerodynamics and aeroelasticity of bridges or bluff bodies 

(Scanlan, 1993; Bhatt & Alam, 2018; Lin & Alam, 2024). 

Davenport and Allan (1962) were the first to introduce the 

concept of aerodynamic admittances to simulate the 

aerodynamic buffeting force. Later, Scanlan (1993) put 

forward the concept of flutter derivatives to simulate the 

self-excited force. Since then, the analytical framework of 

aerodynamic admittances and flutter derivatives has been 

largely followed and studied in wind engineering. In the 

early stage, wind tunnel experiments were the primary 

method for identifying flutter derivatives and have been 

extensively utilized by many researchers (Neuhaus et al., 

2009; Siedziako et al., 2017; Zhang & Zhang, 2017). 

However, with the advancements in computer science, 

computational fluid dynamics (CFD)-based numerical 

simulations have been employed for flutter derivative 

identifications (Xu et al., 2016; Xu & Zhang 2017; 

Bombardieri et al., 2019). This approach has proven to 

reduce the cost and time required for wind tunnel 

experiments (Montoya et al., 2018). Aerodynamic 

buffeting refers to forced vibrations caused by external 

airflow, such as turbulence or gusts, and is characterized 

by random and irregular oscillations. While it is generally 

independent of the structure's natural frequency, it may not 

lead to structural instability; however, it can impact 

comfort and durability. 
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Nomenclature 

B deck width    L lifting force 

𝐶𝐿ℎ
 

lift coefficients associated with the vertical 
bending  

 M pitching moment 

𝐶𝐿𝛼
 lift coefficients associated with torsional motion   U mean wind speed 

𝐶𝑀ℎ
 

pitching moment coefficients associated with 
vertical bending 

 𝛼0 torsional amplitude    

𝐶𝑀𝛼
 

pitching moment coefficients associated with 
torsional motion 

  circular frequency of structural vibration 

ℎ0 vertical bending amplitude  𝜌 air density 
𝐾 reduced frequency    

 

 Forced- and free-vibration methods are the two 

common CFD techniques to identify flutter derivatives. In 

forced vibrations, the deck section is forced to undergo 

harmonic vibration, and the flutter derivatives are derived 

from the displacement and self-excited force signals (Cao 

& Sarkar, 2010). On the other hand, in free vibrations, the 

deck section is allowed to vibrate freely under the effect 

of oncoming flow, and the flutter derivatives are 

determined from the vibration frequency and damping 

ratio (Brownjohn & Bogunovic, 2001). Unlike free 

vibrations, forced vibrations exhibit greater stability and 

reliability within the high reduced wind speed range and 

is hence largely advanced in recent years. 

 Although the identifications of flutter derivatives from 

numerical simulation results are effective (Abbas et al., 

2017), the numerical simulations need validation, 

following grid and time-step independence tests. Indeed, 

many factors including turbulence model, vibration 

amplitude, Reynolds number, and wind angle of attack 

may affect the simulation results. It is thus necessary to 

systematically evaluate the effects of these factors and 

provide references for setting reasonable values in flutter 

derivative identifications. Brusiani et al. (2013) compared 

k-ε, k-Omega, SST k-ω turbulence models in flutter 

derivative identifications of Great Belt East bridge and 

found that SST k-ω model is preferable as the 

corresponding results are close to some experimental data 

available in the literature. Patruno (2015) proved that the 

SST k-ω model is surprisingly accurate in predicting the 

flutter onset velocity. De Miranda et al. (2015) simulated 

the flow field of a twin box deck section using both LES 

and SST k-ω models and found different advantages under 

different gap ratios. Schewe & Larsen (1998) concluded 

that slender bodies with sharp-edged cross sections such 

as bridge box girders may suffer pronounced Reynolds 

number effects (Alam, 2023; Zhou et al. 2024). Further 

research by Bruno and Fransos (2008) showed that the 

flutter derivatives affected by inertial and viscous in-

motion forces are more sensitive to the Reynolds number. 

Zhou and Ma (2010) investigated Reynolds number 

effects on aerostatic coefficients of Great Belt East Bridge 

and Sutong Bridge and concluded that the effect cannot be 

neglected. Noda et al. (2003) found that the flutter 

derivatives are contingent on vibration amplitudes. The 

effect of vibration amplitude on flutter derivatives is then 

highlighted by several researchers (Lin et al., 2019; Zhang 

et al., 2019, 2020a, b). Conducting experiments in a water 

tunnel for flutter derivative identification, Starossek et al. 

(2009) proved that the angle of attack has a significant 

impact on the critical wind speed. In the study of a long-

span suspension bridge, Tang et al. (2018) found that the 

streamlined steel plate presents the characteristics of a 

blunt body under high attack angles. Tang et al. (2019) 

studied the flutter performance of twin-box bridge girders 

and proved that a large attack angle may drive the bridge 

to torsional flutter instability at lower wind speeds. From 

the literature review presented above, it is obvious that the 

identification of flutter derivatives can be affected by 

several factors. Although some parametric analyses on the 

effects of some factors are available (Mannini et al., 2016; 

Lin et al., 2019; Wu et al., 2020), systematic evaluations 

of their effects on flutter derivatives of different cross-

sections are yet scarce. 

 Computational Fluid Dynamics (CFD) offers 

significant advantages over traditional wind tunnel 

experiments. CFD is generally more cost-effective and 

allows easy adjustment of model parameters without size 

limitations, making it suitable for structures of any scale. 

Additionally, CFD can capture more detailed flow field 

information, including velocity and pressure fields. Lastly, 

CFD is better suited for simulating complex flow 

conditions, such as turbulence and flow separation, 

providing a more comprehensive and in-depth 

understanding of fluid dynamics. OpenFOAM is used in 

bridge simulations to model the interaction between fluid 

and bridge structures through Computational Fluid 

Dynamics (CFD) and assess their performance under wind 

loads. Moreover, OpenFOAM can calculate self-excited 

forces and perform fluid-structure interaction analysis by 

integrating with structural analysis software, allowing for 

a comprehensive evaluation of the bridge's overall 

response. Therefore, we leveraged the advantages of 

OpenFOAM to conduct simulation analyses, performing a 

thorough evaluation of two types of bridge sections. 

 In order to enhance the reference material for flutter 

derivative identifications from numerical simulation 

results, our current study encompasses both streamlined 

and bluff bridge decks. We investigate the impact of 

turbulence models, Reynolds numbers, vibration 

amplitudes, and wind attack angles on flutter derivative 

identifications utilizing the open-source CFD software—

OpenFOAM. This paper is organized as follows. Firstly, 

we present the fundamental theory of flutter derivative 

identifications, followed by a description of the 

OpenFOAM simulation process. Subsequently, we discuss 

the effects of the four parameters based on the numerical 

simulation results. Finally, we draw conclusions to offer 

valuable insights for flutter derivative identification 

pertaining to similar bridge decks. 
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2. PROBLEM SETTING  

2.1 Fundamental Theory  

 Considering a two-dimensional bridge deck in a 

smooth flow, the aerodynamic forces and moments can be 

expressed in a mixed time-frequency domain as (Scanlan 

& Tomo, 1971) 

𝐿 =
1

2
𝜌𝑈2(2𝐵)(𝐾𝐻1

∗ ℎ
˙

𝑈
+ 𝐾𝐻2

∗ 𝛼
˙

𝐵

𝑈
+ 𝐾2𝐻3

∗𝛼 + 𝐾2𝐻4
∗ ℎ

𝐵
),  

(1a)  

and 

𝑀 =
1

2
𝜌𝑈2(2𝐵2)(𝐾𝐴1

∗ ℎ
˙

𝑈
+ 𝐾𝐴2

∗ 𝛼
˙

𝐵

𝑈
+ 𝐾2𝐴3

∗ 𝛼 + 𝐾2𝐴4
∗ ℎ

𝐵
),  

  (1b) 

where L and M represent lift force and pitching moment, 

respectively; B is the deck width; 𝜌 is the air density; U 

is the mean wind speed; 𝜔 is the circular frequency of 

structural vibration; 𝐾 = 𝐵𝜔/𝑈 is the reduced frequency; 

𝐻𝑖
∗, 𝐴𝑖

∗（i =1、2、3、4）represent flutter derivatives, which 

are functions of K. 

 The bridge deck is forced to perform single degree-of-

freedom vertical or torsional harmonic vibration as  

ℎ = ℎ0𝑒𝑖𝜔𝑡 ,         (2a) 

and 

𝛼 = 𝛼0𝑒𝑖𝜔𝑡  ,            (2b) 

where ℎ0 is the vertical bending amplitude, and 𝛼0 is the 

torsional amplitude. 

 Plugging equations (2a, b) into equations (1a, b), the 

aeroelastic forces coefficients can be obtained as 

𝐶𝐿ℎ
=

𝐿
1

2
𝜌𝑈2(2𝐵)

= 𝐾ℎ𝐻1
∗ 𝑖𝜔ℎ0𝑒𝑖𝜔𝑡

𝑈
+ 𝐾ℎ

2𝐻4
∗ ℎ0𝑒𝑖𝜔𝑡

𝐵
 ,    (3a) 

𝐶𝑀ℎ
=

𝑀
1

2
𝜌𝑈2(2𝐵2)

= 𝐾ℎ𝐴1
∗ 𝑖𝜔ℎ0𝑒𝑖𝜔𝑡

𝑈
+ 𝐾ℎ

2𝐴4
∗ ℎ0𝑒𝑖𝜔𝑡

𝐵
 ,   (3b) 

𝐶𝐿𝛼
=

𝐿
1

2
𝜌𝑈2(2𝐵)

= 𝐾𝛼𝐻2
∗ 𝐵𝑖𝜔𝛼0𝑒𝑖𝜔𝑡

𝑈
+ 𝐾𝛼

2𝐻3
∗𝛼0𝑒𝑖𝜔𝑡 ,   (3c) 

and 

𝐶𝑀𝛼
=

𝑀
1

2
𝜌𝑈2(2𝐵2)

= 𝐾𝛼𝐴2
∗ 𝐵𝑖𝜔𝛼0𝑒𝑖𝜔𝑡

𝑈
+ 𝐾𝛼

2𝐴3
∗ 𝛼0𝑒𝑖𝜔𝑡 ,  (3d) 

where 𝐶𝐿ℎ
 and 𝐶𝐿𝛼

 are lift coefficients associated with 

the vertical bending and torsional motion, respectively, 

while 𝐶𝑀ℎ
  and 𝐶𝑀𝛼

  are pitching moment coefficients 

associated with vertical bending and torsional motions, 

respectively. 

 Time histories of the force coefficients and 

displacement can lead to estimations of the flutter 

derivatives using the least square method. 

2.2 Simulation Strategy 

 As shown in Fig. 1, two-dimensional models of two 

typical bridge decks are studied here. Section A is a  
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Fig. 1 Two-dimensional bridge deck sections (unit: 
cm): (a) section A, streamlined shape, and (b) section 

B, bluff shape 
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Fig. 2 Schematic diagram for the computational 

domain and boundary conditions  

 

streamlined section of the Great Belt Bridge in Denmark, 

and section B is a bluff section simplified from the bridge 

deck of the American Sunshine Skyway Bridge. 

Scaled models of 1:10 are used for simulations. The 

resulting deck width B is 3.1 m for section A and 4.5 m for 

section B. The geometric model and mesh generation are 

generated by Salomé, which is a free software distributed 

under the terms of the GNU Lesser General Public License, 

providing a generic platform for pre- and post-processing 

of numerical simulation (Ribes & Caremoli, 2007). 

 The computational domain size, following Bruno et al. 

(2001), is illustrated in Fig. 2. The geometric center of the 

bridge deck section is 15B from the inlet, 30B from the 

outlet in the horizontal direction, and 15B from the two 

symmetry edges. The blockage ratios of sections A and B 

are respectively 0.47% and 0.52%, which satisfy the 

requirement (lower than 3%) suggested by Baetke et al. 

(1990), Zheng and Alam (2017, 2019), and Mondal & 

Alam (2023). The bridge deck surfaces are considered 

non-slip walls, and other boundary conditions are shown 

in Fig. 2. 

 Unstructured grids are used for the most computing 

area while structured grids are used near the surfaces of 

the bridge decks. The number of structured grids for 

sections A and B are 6930 and 7142, respectively, and the 

numbers of the unstructured grids are 45761 and 66917, 

respectively. The mesh for section A is presented in Fig. 3  

(a) 

(b) 
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(a)   

(b)  

(c)     

(d)  

Fig. 3 Hybrid mesh of section A (deck of great belt 

bridge): (a) computational domain; (b) refined mesh 

around the deck; (c) mesh near deck; and (d) 

transition between structured and unstructured grids 

 

as an example. The wall functions of K, ε, ω and 𝜇𝑡 

(turbulent viscosity) are selected following different 

turbulence models in OpenFOAM. 

 The mesh size is controlled by the first layer of the 

mesh near the wall. The dimensionless number 𝑦+ is used 

to estimate the thickness of the first layer grid (Körpe et 

al., 2019):  

𝑦+ =
𝑦 𝑢𝜏

𝜈
           (4) 

where  𝑢𝜏is friction velocity, 𝑦 is the distance of the first 

layer grid from the boundary wall, 𝜈 is motion viscosity. 

Simulation results show that y+ < 1 can be satisfied for the 

first layer grid. 

 According to (White, 1979), the thickness of the first 

layer grid can be estimated as: 

 𝛥𝑠 =
𝑦+𝜇

𝑈𝑓𝑟𝑖𝑐⋅𝜌
             (5) 

where 𝛥𝑠 is the mesh thickness of the first layer near the 

bridge section, 𝜌 is the freestream density, 𝜇 is dynamic 

viscosity, and 𝑈𝑓𝑟𝑖𝑐  is friction velocity. According to the 

formula, the thicknesses of the first layer grid are 3.310-

4B and 3.410-4B for sections A and B, respectively. Based 

on the data obtained by back-calculating from the Courant 

number (eq. 6), using a uniform time step of 0.0001s, the 

transition period is approximately 8s before reaching a 

stable phase. The average time period after stabilization is 

around 0.2s. 

u t
Co

x


=


          (6) 

where u represents the fluid velocity, Δt represents the 

time step, and Δx represents the grid size. 

 We employed wall functions in our simulations. 

Without using wall functions, the mesh needs to be fully 

resolved down to the viscous sublayer, which requires a y+ 

value of less than 1 (Bruno et al., 2008). This high mesh 

resolution is a computationally expensive approach. Wall 

functions, however, allow us to avoid this computationally 

expensive approach. The key to using the wall function 

lies in its ability to simplify the flow calculation in the 

near-wall region through empirical formulas and semi-

theoretical models, thus eliminating the need for fine grid 

independence verification near the wall. The wall function 

can reasonably handle the near-wall flow of high-

Reynolds-number turbulence under coarser grid 

conditions, thereby reducing sensitivity to grid resolution. 

The first layer of the mesh can be placed directly within 

the logarithmic region, and the wall function will operate 

based on a predefined velocity profile until the specified 

y+ value is reached. Fig. 4 shows a schematic diagram of 

the wall function. As a result, the influence of mesh size 

can be neglected. In OpenFOAM, wall functions operate 

under strict rules, which are as follows. 

 In the viscous sublayer region, 

u y+ +=            (7) 

where u+ represents the dimensionless velocity based on 

the friction velocity ut. 

In the logarithmic layer, 

1
ln( )u Ey



+ +=           (8) 

where κ = 0.41, and E = 9.8 

 In the buffer layer, the transition between calculations 

in the viscous sublayer and the logarithmic layer is 

determined based on the value of y+. 

 The wall function simplifies the handling of near-wall 

flow, reducing the need for grid refinement and thereby 

alleviating the pressure imposed by Courant number 

limitations. However, even with the use of the wall 

function, controlling the Courant number remains crucial 

for ensuring numerical stability. This is especially 

important in explicit time integration methods, where   
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Fig. 4 Working sketch of wall function 
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Initialization 

flow field

PIMPLE:

Realization 

forced vibration
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processing

mapping

 

Fig. 5 Implementation of forced vibration process 

using OpenFOAM 

 

adjusting the time step or grid resolution is necessary to 

keep the Courant number within a reasonable range 

(Brusiani et al., 2013).  

 The open-source code OpenFOAM was used to 

perform the forced vibration simulations. Solving N-S 

equations and updating dynamic grids are the two key 

points during the implementation of the forced vibration 

process. As shown in Fig. 5, after the preprocessing, the 

steady-state SIMPLE algorithm is first used to initialize 

the flow field, and the results are mapped to the 

computational domain. Then, the transient PIMPLE 

algorithm is used to solve the flow field with a time step 

length of 0.0001 s. The aeroelastic forces on the bridge 

deck are recorded at each time step, which are used to 

calculate flutter derivatives. 

3. NUMERICAL SIMULATION 

3.1 Effect of Turbulence Models 

 To evaluate the effect of turbulent models, the SST k-

ω and k-ε models (Jiang et al., 2018) are used and studied 

in this paper. The other initial calculation conditions are 

set as 0° wind attack angle, the dimensionless amplitude 

h/B = 0.01 − 0.035 for vertical bending motion, and 

torsional amplitude = 1° − 10° for torsional motion. Based 

on this engineering range (Wang et al., 2014), we selected 

h/B = 0.02 and a torsional amplitude of 2°. The Reynolds 

numbers for sections A and B may exceed 2.1×107 under 

actual conditions. In this study, a 10:1 model scaling was 

applied. Considering the reduced wind speed range of 2 to 

14, we selected Re = 6.2×106 and 6.0×106, which 

correspond well with the actual operating conditions. The 

flutter derivatives for sections A and B are plotted against 

the reduced wind speed 2πU/(Bω) in Figs. 6 and 7, 

respectively. 

 For section A (Fig. 6), compared with the k-ε model, 

𝐴1
∗   values from the SST k-ω model are close to the 

experimental values of Poulsen et al. (1992) at low 

reduced wind speed at least. The 𝐴2
∗   and 𝐴3

∗   from the 

two turbulence models are comparable. When the Root 

Mean Square Error (RMSE) between two sets of results is 

less than 0.5, two sets of results are considered close. Their 

values agree well with the experimental results at low 

reduced wind speeds while the deviations between the 

numerical and experimental results become larger at 

higher reduced wind speeds. The values from the two 

turbulence models are close to the experimental results at 

low reduced wind speeds, with RMSE values below 0.2 

(Table 1). The 𝐻1
∗  and 𝐻2

∗  from the two turbulent 

models are close to the experimental results at low reduced 

wind speeds; however, with increasing reduced wind 

speed, the results from the k-ε model deviate from the 

experimental ones, especially for 𝐻2
∗ . Obviously, the 

results of the SST k-ω model are more reliable than those 

of the k-ε model. For 𝐻3
∗, when the reduced wind speed is 

less than 8, the results of the SST k-ω model are closer to 

the experimental values than those of the k-ε model. 

The  𝐻4
∗   errors of the two models are relatively large, 

reflecting the influence of vertical displacement on lift 

force. The RMSE for the SST k-ω model reached 

0.5911(Table 1). This derivative is highly sensitive to wind 

speed and vortex shedding, which can lead to significant 

discrepancies between the numerical simulations and 

experimental results. However, the overall trend remains 

consistent.  

 For section B (Fig. 7), the estimates of 𝐴1
∗ , 𝐴2

∗ , 𝐴3
∗ , 

𝐻2
∗ , 𝐻3

∗  using k-ε model are closer to the experimental 

results than those using SST k-ω model. The RMSE in 

Table 2 demonstrates that the errors of the k-ε model are 

consistently smaller than those of the SST k-ω model. The 

values of 𝐻1
∗  from k-ε model are closer to the 

experimental values for the reduced wind speed of less 

than 4. With the increase of reduced wind speed, the 

results from the two turbulent models both deviate from 

the experiments. Since 𝐻2
∗, 𝐻4

∗, 𝐴2
∗ , 𝐴4

∗   are cross-flutter 

derivatives, they tend to be more significantly influenced 

when slight disturbances occur in the direct flutter 

derivatives under higher wind speeds. In experiments, the 

disturbances generated by the bridge are larger compared 

to those seen in numerical simulations. This discrepancy 

can be attributed to the fact that real-world structures are  

 

Table 1 Root-mean-square error at low wind speeds (2πU/Bω ≤ 8) for section A 

 𝐴1
∗  𝐴2

∗  𝐴3
∗  𝐴4

∗  𝐻1
∗ 𝐻2

∗ 𝐻3
∗ 𝐻4

∗ 

SST 0.00246 0.112 0.00655 0.01865 0.0212 0.158 0.0526 0.5911 

k-  0.0223 0.125 0.0074 0.0511 0.0305 0.09102 0.3408 0.4499 
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Table 2 Root mean square error at low wind speeds (2πU/Bω≤6) for section B 

 𝐴1
∗  𝐴2

∗  𝐴3
∗  𝐴4

∗  𝐻1
∗ 𝐻2

∗ 𝐻3
∗ 𝐻4

∗ 

SST 0.0188 0.1204 0.0374 0.0669 0.4337 0.4195 0.3861 0.4721 

k- 0.0191 0.0112 0.1148 0.0062 0.4538 0.0455 0.0069 0.5884 

 

  

 
 

 
 

  
Fig. 6 Comparison of flutter derivatives for section A obtained from different turbulence models with those 

obtained experimentally by Poulsen et al. (1992)  

(g) (h) 

(e) (f) 

(c) (d) 

(a) (b) 
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Fig. 7 Comparison of flutter derivatives for section  B obtained from different turbulence models with those 

obtained experimentally by Mannini and Bartoli (2008) 

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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Table 3. Identification of flutter derivatives under different Reynolds numbers 

Section Re 𝐴1
∗  𝐴2

∗  𝐴3
∗  𝐴4

∗  𝐻1
∗ 𝐻2

∗ 𝐻3
∗ 𝐻4

∗ 

A 
6.2104 0.428 0.110 0.436 0.031 1.617 0.254 1.659 0.061 

6.2105 0.429 0.110 0.436 0.033 1.620 0.249 1.661 0.064 

6.2106 0.429 0.111 0.436 0.034 1.621 0.240 1.662 0.063 

6.2107 0.429 0.110 0.436 0.034 1.622 0.241 1.659 0.062 

B 
6.0104 0.416 -0.142 0.424 -0.045 -1.508 -0.184 -1.476 0.410 

6.0105 0.423 -0.150 0.431 -0.031 -1.530 -0.214 -1.485 0.428 

6.0106 0.424 -0.151 0.432 -0.026 -1.539 -0.231 -1.488 0.418 

6.0107 0.424 -0.151 0.433 -0.027 -1.544 -0.203 -1.497 0.411 

 

 

 

Fig. 8 Variations of flutter derivative coefficient with 

Reynolds number 

 

exposed to more complex wind conditions, including 

turbulence, variability in wind direction, and other 

environmental factors, which are difficult to fully replicate 

in simulations. 

 According to Matsumoto et al. (1999), 𝐴1
∗ ,  𝐴2

∗  and 𝐻3
∗ 

are the key parameters that dominate the flutter 

performance of a bridge deck. Therefore, it might be 

concluded from the above analyses that the SST k-ω 

model is more suitable for section A while the k-ε model 

is more suitable for section B in view of flutter derivatives 

identification by forced vibration method. 

3.2 Effect of Reynolds Number 

 To evaluate the effect of Reynolds numbers on flutter 

derivative identifications, a range of Reynolds numbers 

(6.0104 - 6.2107) are considered. The other initial 

conditions are the reduced wind speed of 6, the wind 

attack angle of 0°, the dimensionless vertical bending 

amplitude of 0.02, and the torsion amplitude of 2°. The 

identification results of flutter derivatives under different 

Reynolds numbers are shown in Table 3, and the 

coefficients of variation (i.e., the ratio of the standard 

deviation to the mean value) of sections A and B are drawn 

in Fig. 8. For both sections, the variation of 𝐴4
∗   is 

significant. However, the effect of 𝐴4
∗   on the flutter 

performance of a bridge deck is very weak, and hence the  

 

 
Section A: Re = 6.2104 

 
Section A: Re = 6.2107 

 
Section B: Re = 6.0104 

 
Section B: Re = 6.0107 

Fig. 9 Streamline traces around the bridge decks A 

and B at different Reynolds numbers 

 

variation of 𝐴4
∗  is uninterested. Without considering 𝐴4

∗ , 

for section A, 𝐻2
∗ has the largest variation coefficient of 

2.3%, followed by 1.5% of 𝐻4
∗. The variation coefficients 

of other flutter derivatives are all lower than 0.5%.  

 For Section B, 𝐻2
∗ has the largest coefficient variation 

of 8.1%, followed by 2.6% of 𝐴2
∗  and 1.7% of 𝐻4

∗. The 

variation coefficients of other flutter derivatives are lower 

than 1%. It can be concluded that the influence of the 

Reynolds number on flutter derivatives is much greater for 

section B than for section A. 

 Figure 9 shows the streamline traces for sections A and 

B at Re = 6.0104 and 6.2107. For section A, flow 

remains attached on its surface, and the flow features are 

A*
1 A*

2 A*
3 A*

4 H*
1 H*

2 H*
3 H*

4

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

8.0%

23.5%

24.0%

C
o

ef
fi

ci
en

t 
o

f 
V

ar
ia

ti
o

n

 Section A

 Section B
20   0   



Su et al. / JAFM, Vol. 18, No. 4, pp. 835-849, 2025.  

 

843 

similar for the two Reynolds numbers. Therefore, the 

coefficient of variation for the flutter derivatives is smaller, 

and no significant vortex formation is observed in the 

wake of the bridge section. This indicates that the risk of 

flutter and aerodynamic instability of the bridge is 

relatively low. For section B, the flow separates from the 

leading corner of the deck, spawning vortices on the upper 

surface.  

 The vortices grow in size when the Reynolds number 

is increased. The increase in vortex size implies a higher 

likelihood of generating larger vortices and recirculation 

zones, which can lead to stronger fluid-structure 

interactions. This can result in significant changes in the 

flutter derivatives associated with torsional motion, 

yielding a strong fluid-structure coupling. The flow 

feature on the rear side also differs between the two 

Reynolds numbers. It can thus be said that the effect of the 

Reynolds number on flutter derivatives is much larger for 

section B than for section A. 

3.3 Effect of Motion Amplitude 

 It is often assumed that the self-excited forces are 

linear functions of the state vector of the bridge deck, as 

presented in Eq. (2). The assumption is valid for cases of 

small disturbance, i.e., small vibration amplitude. 

However, for the cases of large amplitude vibrations, the 

self-excited forces display nonlinear features. To evaluate 

the effects of vibration amplitudes on flutter derivatives, 

numerical simulations were carried out for several 

vibration amplitudes. For vertical motions, the 

dimensionless amplitude h/B is within 0.01~0.035. For 

torsional motions, the amplitude varies from 1° to 10°. The 

other adopted setting conditions are: the dimensionless 

wind speed is 6, the wind attack angle is 0°, and Re = 

6.2106 and 6.0106 for sections A and B, respectively. 

The results for sections A and B are presented in Fig. 10. 

 As shown in Figs. 10(a-d), 𝐴1
∗ , 𝐻1

∗ and 𝐻4
∗ are quite 

stable for the vertical amplitude range of 0.015~0.025, 

while showing obvious fluctuations when the vertical 

amplitude is greater than 0.025. The 𝐴4
∗  varies irregularly 

with increasing vibration amplitude due to low ratios of 

the relevant force components. Fortunately, the 

identification error of 𝐴4
∗  does not significantly affect the 

flutter analysis of a bridge deck. 

 As shown in Fig. 10 (e-h), for section A, 𝐴2
∗  shows a 

gradual increasing trend with increasing torsional 

amplitude. The 𝐻2
∗  and 𝐴3

∗   do not change significantly 

when the amplitude is less than 4°, but increase sharply 

when the amplitude reaches 6°. The variation of 𝐻3
∗ with 

increasing the vibration amplitude is small. For section B, 

when the amplitude is greater than 2°, the 𝐴2
∗   starts to 

increase significantly. The variations of other flutter 

derivatives with increasing the vibration amplitude are 

very small. Overall, flutter derivative values can be 

considered constants if the vertical and torsional 

amplitudes are lower than 0.025 and 2°, respectively. 

Further increasing the vibration amplitude may result in 

remarkable variations of some flutter derivatives (e.g., 𝐴1
∗  

and 𝐴2
∗ ). 

 

 Figure 11 shows the fast Fourier transform spectrum 

of lift coefficient time histories for various vibration 

amplitudes. For section A (Fig. 11a), there are no obvious 

higher harmonics for the vertical bending amplitudes 

examined. However, a secondary peak occurs at the 

natural vortex shedding frequency marked by Strouhal 

number, which is gradually mitigated with increasing 

vibration amplitude. With the increase of torsional 

amplitude, obvious super-harmonics appear in the self-

excited forces, which is a clear nonlinear feature of the 

self-excited force. As shown in Fig. 11a, the amplitude 

peaks at a frequency of 0.999 Hz for all cases (0.010 − 

0.035), although the peak value declines with increasing 

amplitude, dropping from 0.11 at an amplitude of 0.035 to 

0.032 at an amplitude of 0.010. This suggests that larger 

vertical vibration amplitudes enhance the aerodynamic 

response of the structure, but the peak value tends to 

stabilize at higher amplitudes. In the frequency range 

above 2 Hz, amplitude variations have minimal impact on 

the spectrum, with almost no significant fluctuations or 

secondary peaks in the high-frequency region, indicating 

that high frequencies have a limited effect on the 

aerodynamic response. 

 The primary low-frequency peak, located around 1.14 

Hz (Fig. 11b), is also evident in the torsional vibrations. 

As the torsional angle increases from 1° to 10°, the 

amplitude at the frequency rises significantly, reaching 

approximately 0.43 at 10°, This indicates a strong 

correlation between the torsional angle and the intensity of 

the aerodynamic response. Secondary frequency peaks are 

observed at 3.28 Hz, 5.42 Hz, 7.42 Hz, and 8.57 Hz. 

Although these secondary frequencies exhibit much lower 

amplitudes than the primary frequency, they demonstrate 

that increasing torsional results in a more complex 

aerodynamic response, with the emergence of multiple 

harmonic components. The amplitude of these secondary 

peaks increases with increasing torsional angles, peaking 

at 3.28 Hz with a value of about 0.034 before gradually 

decreasing at higher frequencies. The effect of torsional 

angle is evident not only in the significant increase of the 

primary peak but also in the more pronounced secondary 

peaks, suggesting that larger torsional angles lead to more 

complex aerodynamic behavior and nonlinear phenomena. 

 For section B (Fig. 11c, d), no obvious peak at the 

vortex shedding frequency is observed under different 

vertical bending amplitudes while obvious super-

harmonic peaks appear with the increase of torsional 

amplitude. In the vertical bending vibration of Section B, 

the primary frequency peak consistently appears around 

0.71 Hz. As the amplitude increases from 0.010 to 0.035, 

the amplitude at this primary frequency gradually rises 

from 0.032 at an amplitude of 0.010 to 0.11 at an 

amplitude of 0.035. This trend indicates that larger vertical 

amplitudes enhance the aerodynamic response of the 

structure; however, at higher amplitudes, this 

enhancement tends to stabilize, leading to a diminishing 

impact on aerodynamic characteristics. In the high-

frequency region (above 2 Hz), almost no noticeable 

secondary peaks are discernible, suggesting that higher 

frequencies have minimal effect on the aerodynamic 

response.  
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(a) (b) 

  

(c) (d) 

 
 

(e) (f) 

  

(g) (h) 

Fig. 10 Dependence of flutter derivatives on oscillation amplitudes 
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(a) (b) 

 
 

(c) (d) 

Fig. 11 Power spectra of lift coefficient time histories under different amplitudes: (a) vertical bending vibration 

of section A, (b) torsional vibration of section A, (c) vertical bending vibration of section B, and (d) torsional 

vibration of section B 

 

 In the case of the torsional vibration, the primary 

frequency peak consistently appears at 0.73 Hz and 

increases significantly as the torsional angle rises from 1° 

to 10°. The amplitude rises from 0.056 at 1° to 0.70 at 10°, 

indicating a substantial increase in aerodynamic response 

with increasing torsional angles. Multiple secondary peaks 

appear at higher frequencies, including 2.93 Hz, 3.73 Hz, 

4.46 Hz, and 5.19 Hz. While the amplitudes of these 

secondary peaks are small, they increase gradually with 

increasing torsional angles, demonstrating that the 

structure's nonlinear response becomes more complex 

under greater torsional vibration. Especially at larger 

torsional angles, the aerodynamic coupling effect reveals 

more complex harmonic behaviors. 

3.4 Effect of Attack Angles  

 According to the research results of Zhao et al. (2021), 

the angle of attack can be over 3° in mountainous areas of 

uneven terrain and can be as high as 7° under the action of 

a typhoon. Therefore, to evaluate the effect of attack 

angles on flutter derivatives identifications, attack angles 

of 0° ~ 10° are considered. As shown in Fig. 12, the 

horizontal line defines a zero angle of attack, and the 

attack angle is negative or positive when wind flows  

 

Fig. 12 Schematic diagram of wind attack angle 

 

below or above the line. The other calculation conditions 

are: the dimensionless wind speed is 6, the vertical 

bending dimensionless amplitude is 0.02, and the torsion 

amplitude is 2°. The Reynolds numbers are Re = 6.2106 

and 6.0106 for sections A and B, respectively. 

 The estimated results are shown in Fig. 13. For section 

A (Fig. 13a, b), the values of  𝐴2
∗   and 𝐻4

∗  fluctuate 

irregularly, but the other derivatives vary almost linearly 

with the wind attack angle. It should be noted that 

variations of 𝐴1
∗ , 𝐴4

∗  and 𝐻3
∗ are very small, lying in the 

range of 0°~ ±2°. On the other hand, as shown in Fig. 13(c, 

d), the effects of the attack angle on the flutter derivatives 

are more significant for section B than for section A. The 

significant variations in flutter derivatives can be 

attributed to small changes in the attack angle. This is 

because the pressure distribution on the bridge deck surface 

-10

0

10
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(a) (b) 

  

(c) (d) 

Fig. 13 Variations of flutter derivatives with attack angle: (a, b) section A, and (c, d) section B 

 

changes with the attack angle, which in turn affects the 

overall self-excited forces and thus the flutter derivatives. 

Obviously, the effect of the attack angle on the self-excited 

forces of a bluff section is greater than that of a 

streamlined section. 

4. CONCLUSIONS 

 In this paper numerical simulations of self-excited 

forces on streamlined and bluff bridge decks are 

performed using the open-source code OpenFOAM. The 

effects of turbulence model, Reynolds number, vibration 

amplitude and wind attack angle on the flutter derivative 

identifications are studied. The main conclusions are as 

follows. 

(1) SST k-ω shows advantages in identifying flutter 

derivatives of a streamlined cross-section, while the 

k-ε model is suitable for the simulations of a bluff 

body section. 

(2) When the Reynolds number ranges from 6.0104 to 

6.2107, the average variations of flutter derivatives 

are less than 1.1% and 4.9% for sections A and B, 

respectively. The flutter derivatives of a bluff bridge 

deck are more sensitive to the Reynolds number. To 

accurately predict the critical wind speed for flutter 

instability, the effect of the Reynolds number should 

be considered, especially for bluff bridge decks. 

(3) Flutter derivatives of the tested bridge decks can be 

considered constants if the vertical and torsional 

amplitudes are lower than 0.025 and 2°, respectively. 

Further increasing vibration amplitude may result in 

remarkable variations of some flutter derivatives. 

High-order harmonics exist in the self-excited forces 

for the cases with large amplitude vibrations, 

especially for the bluff bridge deck. 

(4) Generally, the flutter derivatives are more sensitive to 

wind attack angle for section B than for section A. In 

the flutter analysis of a bridge, it is necessary to cover 

the possible range of wind attack angles, especially 

for the bluff bridge decks in areas with complex 

topography. 

ACKNOWLEDGMENTS 

 The research in this paper was supported by three 

foundations: (i) National Natural Science Foundation of 

China (U23A20661); (ii) Special guiding fund for 

building energy conservation and green building in 

Zhenjiang City (zk20220001; JSU10SK2024ZX003). 

CONFLICT OF INTEREST  

The authors declare no conflict of interest. 

AUTHORS CONTRIBUTION 

Bo Su: Conceptualization, Methodology, Formal analysis, 

Writing original draft, Writing Review & Editing; Yiwen 

Liu: Formal analysis, Visualization, Writing original draft, 

Writing Review & Editing; Mwansa Chambalile: 

Writing review & editing ,Investigation Validation; Gang 

Wang:Writing Review & Editing Investigation 

Validation; Md. Mahbub Alam: Writing of the Final 



Su et al. / JAFM, Vol. 18, No. 4, pp. 835-849, 2025.  

 

847 

Manuscript, Review & Editing, Visualization; Ebarhim 

Barati: Supervision, Methodology, Review & Editing. 

REFERENCES 

Abbas, T., Kavrakov, I., & Morgenthal, G. (2017). 

Methods for flutter stability analysis of long-span 

bridges: a review. Proceedings of the Institution of 

Civil Engineers-Bridge Engineering, 271-310. 

Thomas Telford Ltd. 
https://doi.org/10.1680/jbren.15.00039 

Alam, M. M. (2023). Fluctuating forces on bluff bodies 

and their relationships with flow structures. Ocean 

Engineering, 273, 113870. 

https://doi.org/10.1016/j.oceaneng.2023.113870 

Amman, O. H., Karman, T., & Woodruff, G. B. (1941). 

The failure of the tacoma narrows bridge. 

https://doi.org/10.1201/9780367815646-13  

Baetke, F., Warner. H., & Wengle, H. (1990). Numerical 

simulation of turbulent flow over surface-mounted 

obstacles with sharp edges and corners. Journal of 

Wind Engineering and Industrial Aerodynamics, 35, 

129-47. https://doi.org/10.1016/0167-

6105(90)90193-g  

Bhatt, R., & Alam, M. M. (2018). Vibration of a square 

cylinder submerged in a wake. Journal of Fluid 

Mechanics, 853 ,301-332. 

https://doi.org/10.1017/jfm.2018.573  

Bombardieri, R., Cavallaro, R., Sáez de Teresa, J. L., & 

Karpel, M. (2019). Nonlinear aeroelasticity: a cfd-

based adaptive methodology for flutter prediction. 

AIAA Scitech 2019 Forum (p. 1866). 

https://doi.org/10.2514/6.2019-1866  

Brownjohn, J. M. W., & Bogunovic, J. (2001). Strategies 

for aeroelastic parameter identification from bridge 

deck free vibration data. Journal of Wind Engineering 

and Industrial Aerodynamics, 89, 1113-36. 

https://doi.org/10.1016/s0167-6105(01)00091-5  

Bruno, L., & Fransos, D. (2008). Evaluation of reynolds 

number effects on flutter derivatives of a flat plate by 

means of a computational approach. Journal of Fluids 

and Structures, 24, 1058-76. 
https://doi.org/10.1016/j.jfluidstructs.2008.03.001  

Bruno, L., Khris, S, & Marcillat, J. (2001). Numerical 

simulation of the effect of section details and partial 

streamlining on the aerodynamics of bridge decks. 

Wind and Structures, 4, 315-32. 

https://doi.org/10.12989/was.2001.4.4.315  

Brusiani, F., Miranda, S. D., Patruno, L., Ubertini, F., & 

Vaona, P. (2013). On the evaluation of bridge deck 

flutter derivatives using RANS turbulence models. 

Journal of Wind Engineering Industrial 

Aerodynamics, 119, 39-47. 

https://doi.org/10.1016/j.jweia.2013.05.002  

Cao, B., & Sarkar, P. (2010, May, 23-27). Identification of 

rational functions by forced vibration method for 

time-domain analysis of flexible structures. 

Proceedings: The Fifth International Symposium on 

Computational Wind Engineering, Chapel Hill. 

https://doi.org/10.1016/j.engstruct.2012.05.003  

Davenport, & Allan, G. (1962). Buffeting of a suspension 

bridge by storm winds. Journal of the Structural 

Division, 88, 233–70. 

https://doi.org/10.1061/jsdeag.0000773 

De Miranda, S., Patruno, L., Ricci, M., & Ubertini, F. 

(2015). Numerical study of a twin box bridge deck 

with increasing gap ratio by using RANS and LES 

approaches. Engineering Structures, 99, 546-58. 

https://doi.org/10.1016/j.engstruct.2015.05.017  

Jiang, L., Mingjun, D., Haomiao, S., & Yu, R. (2018). 

Numerical Modeling of flow over a rectangular 

broad-crested weir with a sloped upstream face. Water, 

10, 1663. https://doi.org/10.3390/w10111663  

Körpe, D. S., Kanat, Ö. Ö., & Oktay, T. (2019). The 

Effects of initial y plus: numerical analysis of 3D 

NACA 4412 wing using γ-Reθ SST Turbulence 

model. Avrupa Bilim ve Teknoloji Dergisi, 692-702. 

https://doi.org/10.31590/ejosat.631135  

Lin, C., & Alam, M. M. (2024). Intrinsic features of flow-

induced stability of square cylinder. Journal of Fluid 

Mechanics, 988, A50. 

https://doi.org/10.1017/jfm.2024.445  

Lin, S., Qi, W., Nikolaos, N., & Haili, L. (2019). Effects 

of oscillation amplitude on motion-induced forces for 

5: 1 rectangular cylinders. Journal of Wind 

Engineering and Industrial Aerodynamics, 186, 68–

83. https://doi.org/10.1016/j.jweia.2019.01.002  

Mannini, C., & Bartoli, G. (2008). Investigation on the 

dependence of bridge deck flutter derivatives on 

steady angle of attack. Proc., BBAA VI Int. 

Colloquium on Bluff Bodies Aerodynamics and 

Applications. Citeseer. 

https://api.semanticscholar.org/CorpusID:221712605 

Mannini, C., Sbragi, G., & Schewe, G. (2016). Analysis of 

self-excited forces for a box-girder bridge deck 

through unsteady RANS simulations. Journal of 

Fluids and Structures, 63, 57-76. 

https://doi.org/10.1016/j.jfluidstructs.2016.02.007  

Mondal, M., & Alam, M. M. (2023). Blockage effect on 

wakes of various bluff bodies: a review of confined 

flow. Ocean Engineering, 268, 115592. 
https://doi.org/10.1016/j.oceaneng.2023.115592  

Matsumoto, M., Yoshizumi, F., Yabutani, T., Abe, K., & 

Nakajima, N. (1999). Flutter stabilization and 

heaving-branch flutter. Journal of Wind Engineering 

and Industrial Aerodynamics, 83, 289-99. 

https://doi.org/10.1016/s0167-6105(99)00079-3  

Montoya, M. C., Nieto, F., Hernández, F., Kusano, I., 

Álvarez, A. J. & Jurado, J. Á. (2018). CFD-based 

aeroelastic characterization of streamlined bridge 

deck cross-sections subject to shape modifications 

using surrogate models. Journal of Wind Engineering 

and Industrial Aerodynamics, 177, 405-28. 

https://doi.org/10.1016/j.jweia.2018.01.014  

https://doi.org/10.1680/jbren.15.00039
https://doi.org/10.1016/j.oceaneng.2023.113870
https://doi.org/10.1201/9780367815646-13
https://doi.org/10.1016/0167-6105(90)90193-g
https://doi.org/10.1016/0167-6105(90)90193-g
https://doi.org/10.1017/jfm.2018.573
https://doi.org/10.2514/6.2019-1866
https://doi.org/10.1016/s0167-6105(01)00091-5
https://doi.org/10.1016/j.jfluidstructs.2008.03.001
https://doi.org/10.12989/was.2001.4.4.315
https://doi.org/10.1016/j.jweia.2013.05.002
https://doi.org/10.1016/j.engstruct.2012.05.003
https://doi.org/10.1061/jsdeag.0000773
https://doi.org/10.1016/j.engstruct.2015.05.017
https://doi.org/10.3390/w10111663
https://doi.org/10.31590/ejosat.631135
https://doi.org/10.1017/jfm.2024.445
https://doi.org/10.1016/j.jweia.2019.01.002
https://api.semanticscholar.org/CorpusID:221712605
https://doi.org/10.1016/j.jfluidstructs.2016.02.007
https://doi.org/10.1016/j.oceaneng.2023.115592
https://doi.org/10.1016/s0167-6105(99)00079-3
https://doi.org/10.1016/j.jweia.2018.01.014


B. Su et al. / JAFM, Vol. 18, No. 4, pp. 835-849, 2025.  

 

848 

Neuhaus, C., Höffer, R., & Roesler, S. (2009). 

Identification of 18 Flutter derivatives by forced 

vibration tests: A New experimental rig. Identification 

of 18 Flutter Derivatives by Forced Vibration Tests, 

1000-04. 

https://api.semanticscholar.org/CorpusID:124841633 

Noda, M., Utsunomiya, H., Nagao, F., Kanda, M., & 

Shiraishi, N. (2003). Effects of oscillation amplitude 

on aerodynamic derivatives. Journal of Wind 

Engineering Industrial Aerodynamics, 91, 101-11. 

https://doi.org/10.1016/s0167-6105(02)00338-0  

Patruno, L. (2015). Accuracy of numerically evaluated 

flutter derivatives of bridge deck sections using 

RANS: Effects on the flutter onset velocity. 

Engineering Structures, 89, 49-65. 

https://doi.org/10.1016/j.engstruct.2015.01.034  

Poulsen, N. K., Damsgaard, A., & Reinhold, T. A. (1992). 

Determination of flutter derivatives for the Great Belt 

Bridge. Journal of Wind Engineering and Industrial 

Aerodynamics, 41, 153–64. 

https://doi.org/10.1016/0167-6105(92)90403-w  

Ribes, A., & Caremoli, C. (2007). Salome platform 

component model for numerical simulation. 

International Computer Software & Applications 

Conference. 

https://doi.org/10.1109/compsac.2007.185  

Scanlan, R. H., & Tomo, J. (1971). Air foil and bridge deck 

flutter derivatives. Journal of Soil Mechanics & 

Foundations Div. 

https://doi.org/10.1061/jmcea3.0001526  

Scanlan, R. H. (1993). Problematics in formulation of 

wind-force models for bridge decks. Journal of 

Engineering Mechanics, 119, 1353–75. 

https://doi.org/10.1061/(asce)0733-

9399(1993)119:7(1353)  

Schewe, G., & Larsen, A. (1998). Reynolds number 

effects in the flow around a bluff bridge deck cross 

section. Journal of Wind Engineering Industrial 

Aerodynamics, 74, 829-38. 

https://doi.org/10.1016/s0167-6105(98)00075-0  

Siedziako, B., Øiseth, O., & Rønnquist, A. (2017). An 

enhanced forced vibration rig for wind tunnel testing 

of bridge deck section models in arbitrary motion. 

Journal of Wind Engineering and Industrial 

Aerodynamics, 164, 152-63. 

https://doi.org/10.1016/j.jweia.2017.02.011  

Starossek, U., Aslan, H., & Thiesemann, L. (2009). 

Experimental and numerical identification of flutter 

derivatives for nine bridge deck sections. Wind and 

Structures, 12, 519. 

https://doi.org/10.12989/was.2009.12.6.519  

Tang, H., Li, Y., & Shum, K. M. (2018). Flutter 

performance of long-span suspension bridges under 

non-uniform inflow. Advances in structural 

Engineering, 21, 201-13. 

https://doi.org/10.1177/1369433217713926  

Tang, H., Shum, K. M., & Li, Y. (2019). Investigation of 

flutter performance of a twin-box bridge girder at 

large angles of attack. Journal of Wind Engineering 

Industrial Aerodynamics, 186, 192-203. 

https://doi.org/10.1016/j.jweia.2019.01.010  

Wang, L., Liu, Z., & Chen, Z. (2014). Multi-state and 

multi-frequency forced vibration identification of 

flutter derivatives of bridge sections. Vibration and 

Shock, 37, 20-28. 

https://link.cnki.net/doi/10.13465/j.cnki.jvs.2018.20.

003 

White, F. M. (1979). Fluid mechanics (Tata McGraw-Hill 

Education). https://doi.org/10.1007/3-540-27223-2_1  

Wu, B., Wang, Q., Liao, H., Li, Y., & Li, M. (2020). Flutter 

derivatives of a flat plate section and analysis of 

flutter instability at various wind angles of attack. 

Journal of Wind Engineering and Industrial 

Aerodynamics, 196, 104046. 

https://doi.org/10.1016/j.jweia.2019.104046 

Xu, F., Ying, X., & Zhang, Z. (2016). Effects of 

exponentially modified sinusoidal oscillation and 

amplitude on bridge deck flutter derivatives. Journal 

of Bridge Engineering, 21, 06016001. 

https://doi.org/10.1061/(asce)be.1943-5592.0000884  

Xu, F., & Zhang, Z. (2017). Free vibration numerical 

simulation technique for extracting flutter derivatives 

of bridge decks. Journal of Wind Engineering and 

Industrial Aerodynamics, 170, 226–37. 

https://doi.org/10.1016/j.jweia.2017.08.018  

Zhang, M., Xu, F., & Han, Y. (2020a). Assessment of 

wind-induced nonlinear post-critical performance of 

bridge decks. Journal of Wind Engineering and 

Industrial Aerodynamics, 203, 104251. 

https://doi.org/10.1016/j.jweia.2020.104251 

Zhang, M., Xu, F., Wu, T., & Zhang, Z. (2020b). 

Postflutter Analysis of bridge decks using 

aerodynamic-describing functions. Journal of Bridge 

Engineering, 25, 04020046. 

https://doi.org/10.1061/(asce)be.1943-5592.0001587  

Zhang, M., Xu, F., Zhang, Z., & Ying, X. (2019). Energy 

budget analysis and engineering modeling of post-

flutter limit cycle oscillation of a bridge deck. Journal 

of Wind Engineering and Industrial Aerodynamics, 

188, 410-20. 

https://doi.org/10.1016/j.jweia.2019.03.010  

Zhang, Z., & Zhang, W. (2017). Experimental 

investigation on relations between flutter derivatives 

and aerodynamic admittances. Journal of Bridge 

Engineering, 22, 04017068. 

https://doi.org/10.1061/(asce)be.1943-5592.0001117  

Zhao, L, Wu, F, & Pan, J. (2021). Wind field 

characteristics and wind-induced buffeting response 

of a long-span bridge during the landing of a strong 

typhoon Journal of Aerodynamics, 39 , 86-97.  

https://doi.org/10.7638/kqdlxxb-2021.0066 

Zheng, Q., & Alam, M. M. (2017). Intrinsic features of 

flow past three square prisms in side-by-side 

arrangement. Journal of Fluid Mechanics, 826, 996 – 

https://api.semanticscholar.org/CorpusID:124841633
https://doi.org/10.1016/s0167-6105(02)00338-0
https://doi.org/10.1016/j.engstruct.2015.01.034
https://doi.org/10.1016/0167-6105(92)90403-w
https://doi.org/10.1109/compsac.2007.185
https://doi.org/10.1061/jmcea3.0001526
https://doi.org/10.1061/(asce)0733-9399(1993)119:7(1353)
https://doi.org/10.1061/(asce)0733-9399(1993)119:7(1353)
https://doi.org/10.1016/s0167-6105(98)00075-0
https://doi.org/10.1016/j.jweia.2017.02.011
https://doi.org/10.12989/was.2009.12.6.519
https://doi.org/10.1177/1369433217713926
https://doi.org/10.1016/j.jweia.2019.01.010
https://link.cnki.net/doi/10.13465/j.cnki.jvs.2018.20.003
https://link.cnki.net/doi/10.13465/j.cnki.jvs.2018.20.003
https://doi.org/10.1007/3-540-27223-2_1
https://doi.org/10.1016/j.jweia.2019.104046
https://doi.org/10.1061/(asce)be.1943-5592.0000884
https://doi.org/10.1016/j.jweia.2017.08.018
https://doi.org/10.1016/j.jweia.2020.104251
https://doi.org/10.1061/(asce)be.1943-5592.0001587
https://doi.org/10.1016/j.jweia.2019.03.010
https://doi.org/10.1061/(asce)be.1943-5592.0001117
https://doi.org/10.7638/kqdlxxb-2021.0066


Su et al. / JAFM, Vol. 18, No. 4, pp. 835-849, 2025.  

 

849 

1033. https://doi.org/10.1017/jfm.2017.378  

Zheng, Q., & Alam, M. M. (2019). Evolution of the wake 

of three inline square prisms. Physical Review Fluids, 

4(10), 104701. 

https://doi.org/10.1103/physrevfluids.4.104701  

Zhou, Z., & Ma, R. (2010). Numerical simulation study of 

the Reynolds number effect on two bridge decks 

based on the deterministic vortex method. Wind and 

Structures, 13, 347-62. 

https://doi.org/10.12989/was.2010.13.4.347  

Zhou, Y., Hao, J., & Alam, M. M. (2024). Wake of two 

tandem square cylinders. Journal of Fluid Mechanics, 

983, A3. https://doi.org/10.1017/jfm.2024.119 

 

https://doi.org/10.1017/jfm.2017.378
https://doi.org/10.1103/physrevfluids.4.104701
https://doi.org/10.12989/was.2010.13.4.347
https://doi.org/10.1017/jfm.2024.119

