Ajrash, M. J., Zanganeh, J., & Moghtaderi, B. (2017). Deflagration of premixed methane-air in a large scale detonation tube.
Process Safety and Environmental Protection, 109, 374-386.
https://doi.org/10.1016/j.psep.2017.03.035
Bao, Q., Fang, Q., Yang, S. G., Zhang, Y. D., Xiang, H. B., Chen, L., & Li, Z. (2016). Experimental investigation on the deflagration load under unconfined methane-air explosions.
Fuel, 185, 565-576.
https://doi.org/10.1016/j.fuel.2016.07.126
Bu, F. X., Liu, Y., Liu, Y. B., Xu, Z., Chen, S. Q., Jiang, M. H., & Guan, B. (2021). Leakage diffusion characteristics and harmful boundary analysis of buried natural gas pipeline under multiple working conditions.
Journal of Natural Gas Science and Engineering, 94.
https://doi.org/10.1016/j.jngse.2021.104047
Chen, Y., Li, Z. T., Ji, C., & Liu, X. Y. (2020). Effects of hydrogen concentration, non-homogenous mixtures and obstacles on vented deflagrations of hydrogen-air mixtures in a 27 m3 chamber.
International Journal of Hydrogen Energy, 45(11), 7199-7209.
https://doi.org/10.1016/j.ijhydene.2019.11.082
Cui, G., Li, Z. L., & Yang, C. (2016). Experimental study of flammability limits of methane/air mixtures at low temperatures and elevated pressures.
Fuel, 181, 1074-1080.
https://doi.org/10.1016/j.fuel.2016.04.116
Debnath, P., & Pandey, K. M. (2024). Exergetic and Thermal performance analysis of liquid and gaseous fuel–air mixture in PDC using computational fluid dynamics.
Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-024-09319-5
Debnath, P., Pandey, K., & Science, S. (2023). Numerical Investigation on detonation combustion waves of hydrogen-air mixture in pulse detonation combustor with blockage.
Advances in aircraft and spacecraft, 10(3), 203-222.
https://doi.org/10.12989/aas.2023.10.3.203
Fakandu, B. M., Andrews, G. E., & Phylaktou, H. N. (2015). Vent burst pressure effects on vented gas explosion reduced pressure.
Journal of Loss Prevention in the Process Industries, 36, 429-438.
https://doi.org/10.1016/j.jlp.2015.02.005
Fang, Z. L., Zeng, F. D., Xiong, T., Wei, W., Jiang, P., Wu, Q., Wang, Y. S., & Fei, Y. X. (2020). Large eddy simulation of self-excited oscillation inside Helmholtz oscillator.
International Journal of Multiphase Flow, 126.
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103253
Hong, Y. D., Lin, B. Q., & Zhu, C. J. (2016). Premixed methane/air gas deflagration simulations in closed-end and open-end tubes.
International Journal of Spray and Combustion Dynamics, 8(4), 271-284.
https://doi.org/10.1177/1756827716648640
Huang, L. J., Li, Z. F., Wang, Y., Zhang, L., Su, Y. L., Zhang, Z., & Ren, S. R. (2021). Experimental assessment on the explosion pressure of CH4-Air mixtures at flammability limits under high pressure and temperature conditions.
Fuel, 299.
https://doi.org/10.1016/j.fuel.2021.120868
Huang, L. J., Wang, Y., Pei, S. F., Cui, G. D., Zhang, L., Ren, S. R., Zhang, Z., & Wang, N. R. (2019). Effect of elevated pressure on the explosion and flammability limits of methane-air mixtures.
Energy, 186.
https://doi.org/10.1016/j.energy.2019.07.170
Huang, L. J., Wang, Y., Zhang, L., Su, Y. L., Zhang, Z., & Ren, S. R. (2022). Influence of pressure on the flammability limits and explosion pressure of ethane/propane-air mixtures in a cylinder vessel.
Journal of Loss Prevention in the Process Industries, 74.
https://doi.org/10.1016/j.jlp.2021.104638
Huo, Y., Zou, G. W., Dong, H., & Cheng, F. M. (2022). Propagation characteristics of turbulent deflagration in horizontal tunnel with lateral liquefied petroleum gas concentration variations.
Tunnelling and Underground Space Technology, 124.
https://doi.org/10.1016/j.tust.2022.104477
Li, G., Wu, J., Wang, S., Bai, J., Wu, D., & Qi, S. (2021). Effects of gas concentration and obstacle location on overpressure and flame propagation characteristics of hydrocarbon fuel-air explosion in a semi-confined pipe.
Fuel, 285.
https://doi.org/10.1016/j.fuel.2020.119268
Li, P. L., Liu, Z. Y., Li, M. Z., Huang, P., Zhao, Y., Li, X., & Jiang, S. K. (2019). Experimental study on the flammability limits of natural gas/air mixtures at elevated pressures and temperatures.
Fuel, 256.
https://doi.org/10.1016/j.fuel.2019.115950
Liu, X. J., Xu, Z. D., Sun, B., Liu, X. Y., & Xu, D. J. (2024). Spatiotemporal state assessment for the underground pipe gallery: Physical model and experimental verification.
Tunnelling and Underground Space Technology, 143.
https://doi.org/10.1016/j.tust.2023.105474
Liu, Z. R., Li, X. X., Li, M., & Xiao, H. H. (2023). Flame acceleration and DDT in a channel with fence-type obstacles: Effect of obstacle shape and arrangement.
Proceedings of the Combustion Institute, 39(3), 2787-2796.
https://doi.org/10.1016/j.proci.2022.08.046
Lv, X. S., Zheng, L. G., Zhang, Y. G., Yu, M. G., & Su, Y. (2016). Combined effects of obstacle position and equivalence ratio on overpressure of premixed hydrogen-air explosion.
International Journal of Hydrogen Energy, 41(39), 17740-17749.
https://doi.org/10.1016/j.ijhydene.2016.07.263
Mei, Y., Shuai, J., Li, Y. T., Zhou, N., Ren, W., & Ren, F. (2023). Flame acceleration process of premixed hydrogen in confined space with different obstacle shapes.
Fuel, 334, 14.
https://doi.org/10.1016/j.fuel.2022.126624
Na'inna, A. M., Somuano, G. B., Phylaktou, H. N., & Andrews, G. E. (2015). Flame acceleration in tube explosions with up to three flat-bar obstacles with variable obstacle separation distance.
Journal of Loss Prevention in the Process Industries, 38, 119-124.
https://doi.org/10.1016/j.jlp.2015.08.009
Nicoud, F., & Ducros, F. (1999). Subgrid-scale stress modelling based on the square of the velocity gradient tensor.
Flow, turbulence and Combustion,
62(3), 183-200.
https://doi.org/10.1023/a:1009995426001
Pan, C., Wang, X., Sun, H., Zhu, X., Zhao, J., Fan, H., & Liu, Y. J. F. (2022). Large-eddy simulation and experimental study on effects of single-dual sparks positions on vented explosions in a channel.
Fuel, 322, 124282.
https://doi.org/10.1016/j.fuel.2022.124282
Saeid, M. H. S., Khadem, J., & Emami, S. (2021). Numerical investigation of the mechanism behind the deflagration to detonation transition in homogeneous and inhomogeneous mixtures of H2-air in an obstructed channel.
International Journal of Hydrogen Energy, 46(41), 21657-21671.
https://doi.org/10.1016/j.ijhydene.2021.04.006
Shen, X. B., Zhang, B., Zhang, X. L., & Xiu, G. L. (2017). Explosion characteristics of methane-ethane mixtures in air.
Journal of Loss Prevention in the Process Industries, 45, 102-107.
https://doi.org/10.1016/j.jlp.2016.11.012
Wan, H. W., Wen, Y. Q., & Zhang, Q. (2023). Flame behaviors and explosion characteristics of two-phase propylene oxide/air mixture under different ambient pressures.
Process Safety Progress, 42(1), 126-140.
https://doi.org/10.1002/prs.12429
Wang, Q., Luo, X. J., Wang, C. J., Liu, Y., Zhou, P. G., & Li, B. (2022). Experimental study on external explosion for vented hydrogen deflagration in a rectangular tube with different vent coefficients.
Process Safety and Environmental Protection, 158, 331-339.
https://doi.org/10.1016/j.psep.2021.12.002
Zimont, V., & Battaglia, V. (2006). Joint RANS/LES approach to premixed flame modelling in the context of the TFC combustion model.
Flow, Turbulence and Combustion, 77(1), 305-331.
https://doi.org/10.1007/s10494-006-9048-0