Study on the Shock Wave Characteristics of Spherical and Cylindrical Explosives in Near-field Underwater Explosion

Document Type : Regular Article

Authors

1 China Ship Scientific Research Center, Wuxi, Jiangsu, 214082, China

2 Taihu Laboratory of Deep-sea Technology Science, Wuxi, Jiangsu, 214082, China

3 National Key Laboratory of Ship Structural Safety, Wuxi, China, Wuxi, Jiangsu, 214082, China

10.47176/jafm.18.4.2960

Abstract

Underwater explosions are applied across diverse sectors and present considerable risks to marine infrastructures. Therefore, precise prediction of shockwave loading characteristics for various charge shapes during underwater explosions is critical. This study presents a novel compressible multiphase fluid solver, developed to accurately simulate shockwave propagation and the dynamics of multiphase interfaces. A spatial discretization of the system equations utilizes a fifth-order Weighted Essentially Non-Oscillatory (WENO) scheme for reconstruction, whereas temporal discretization employs a third-order Total Variation Diminishing (TVD) scheme implemented via Runge–Kutta methods. Furthermore, the description of the detonation reaction incorporates a newly developed programmed burn model. The interface dynamics are captured through the application of the level-set method. The solver was initially validated by comparing the propagation results of detonation waves against established data in the literature. Both the simulated peak pressures and shockwave histories closely matched theoretical and experimental data. Different geometries of TNT charges were then analyzed to investigate shockwave propagation in near-field underwater explosions. The newly developed compressible multiphase solver, incorporating detonation reactions, precisely captured the early stages of shockwave propagation. This research offers vital technical insights for accurately predicting shockwave dynamics in near-field underwater explosions in complex scenarios.

Keywords

Main Subjects


Baum, F. A., & Sanasaryan, N. S. (1965). Effect of hydrostatic pressure on the parameters of an underwater explosion. Combustion, Explosion, and Shock Waves, 1 (4), 52-62. http://doi.org/10.1007/BF00743521
Bdzil, J. B., Stewart, D. S., & Jackson, T. L. (2001). Program burn algorithms based on detonation shock dynamics: Discrete approximations of detonation flows with discontinuous front models. Journal of Computational Physics, 174, 870-902. http://doi.org/10.1006/jcph.2001.6934
Benson, D. J. (1992). Computational methods in Lagrangian and Eulerian hydrocodes. Computer Methods in Applied Mechanics and Engineering, 99, 235-394. http://doi.org/10.1016/0045-7825(92)90042-I
Blaik, M., & Christian, E. A. (1964). Pressure pulses of small explosions at great depths in the ocean. 68th Meeting, Acoust. Soc. Am, Austin, Texas (1964). https://doi.org/10.1121/1.1939301
Cole, R. H. (1948). Underwater explosion. Princeton University Press, New Jersey.
Handley, C. A., Lambourn, B. D., Whitworth, N. J., James, H. R., & Belfield, W. J. (2018). Understanding the shock and detonation response of high explosives at the continuum and meso scales. Applied Physics Reviews, 5, 011303. http://doi.org/10.1063/1.5018290
Hilliar, H. W. (1950). Experiments on the pressure wave thrown out by submarine explosions. Department of the Navy, Office of Naval Research, Washington, D.C., 86-158.
Kennard, E. H. (1950). Report on underwater explosions. Department of the Navy, Office of Naval Research, Washington, D.C., 159-208.
Knock, C., & Davies, N. (2013). Blast waves from cylindrical charges. Shock Waves, 23, 337-343. http://doi.org/10.1007/s00193-013-0441-1
Liu, G. R., & Liu, M. B. (2010). Smoothed particle hydrodynamics: A meshfree particle method. World Scientific Publishing, Singapore, http://doi.org/10.1142/9789812779240
Liu, T., Khoo, B., & Yeo, K. (2003). Ghost fluid method for strong shock impacting on material interface. Journal of Computational Physics, 190, 651-681. http://doi.org/10.1016/S0021-9991(03)00203-8
Miller, G. H., & Puckett, E. G. (1996). A high-order Godunov method for multiple condensed phases. Journal of Computational Physics, 128(1), 134-164. http://doi.org/10.1006/jcph.1996.0200
Mulder, W., Osher, S., & Sethian, J. A. (1992). Computing interface motion in compressible gas dynamics. Journal of Computational Physics, 100, 209-228. http://doi.org/10.1016/0021-9991(92)90227-C
Osher, S., & Fedkiw, R. (2001). Level set methods: An overview and some recent results. Journal of Computational Physics, 169, 463-502. http://doi.org/10.1006/jcph.2000.6636
Penney, W. G., & Dasgupta, H. K. (1950). The pressure-time curve for underwater explosions (II). Department of the Navy, Office of Naval Research, Washington, D.C., 289-300.
Plooster, M. N. (1982). Blast effects from cylindrical explosive charges: Experimental measurements. Naval Report Centre, China Lake, California 93555.
Price, M. A., Nguyen, V. T., Hassan, O., & Morgan, K. (2015). A method for compressible multimaterial flows with condensed phase explosive detonation and airblast on unstructured grids. Computers & Fluids, 111, 76-90.  http://doi.org/10.1016/j.compfluid.2014.05.001
Sheng Z., Hao Y., Liu J., Wang H., Gao Y. & Ma, F. (2023). A shockwave calculation method for aluminized explosive of deep water explosion based on the Kirkwood-Bethe model. Propellants, Explosives, Pyrotechnics, 48, e202200247.  https://doi.org/10.1002/prep.202200247
Shu, C. W., & Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics, 77, 439-471. http://doi.org/10.1016/0021-9991(88)90177-5
Wang, L., Currao, G. M. D., Han, F., Neely, A. J., Young, J., & Tian, F. B. (2017). An immersed boundary method for fluid–structure interaction with compressible multiphase flows. Journal of Computational Physics, 346, 131-151. http://doi.org/10.1016/j.jcp.2017.06.048
Yu, J., Liu, G. Z., Wang, J., & Wang, H. K. (2021a). An effective method for modeling the load of bubble jet in underwater explosion near the wall. Ocean Engineering, 220, 108408.  http://doi.org/10.1016/j.oceaneng.2020.108408
Yu, J., Liu, J. H., Wang, H. K., Wang, J., Zhang, L. P., & Liu, G. Z. (2021b). Numerical simulation of underwater explosion cavitation characteristics based on phase transition model in compressible multicomponent fluids. Ocean Engineering, 240, 109934. http://doi.org/10.1016/j.oceaneng.2021.109934
Yu, J., Liu, J. H., Wang, H. K.,Wang, J., Zhou, Z. T., & Mao, H. B. (2022). Application of two-phase transition model in underwater explosion cavitation based on compressible multiphase flows. AIP. Advances, 12, 025209. http://doi.org/10.1063/5.0082209
Yu, J., Wang, J., Zhang, X. P., Hao, Y., Jiang, X. W., & Shen, C. (2024a). A high precision instantaneous detonation model (hp-IDM) for condensed energetic materials and its application in underwater explosions. Journal of Applied Physics, 136, 044701. https://doi.org/10.1063/5.0220493
Yu, J., Zhang, X. P., Chen, J. P., & Xu, Y. Q. (2024b). A high-order simulation method for compressible multiphase flows with condensed-phase explosive detonation in underwater explosions. Physics of Fluids, 36, 016133. http://doi.org/10.1063/5.0134567
Zhang, A. M., Li, S. M., Cui, P., Li, S., & Liu, Y. L. (2023). A unified theory for bubble dynamics. Physics of Fluids, 35, 033323.  http://doi.org/10.1063/5.0123456