Baum, F. A., & Sanasaryan, N. S. (1965). Effect of hydrostatic pressure on the parameters of an underwater explosion.
Combustion, Explosion, and Shock Waves,
1 (4), 52-62.
http://doi.org/10.1007/BF00743521
Bdzil, J. B., Stewart, D. S., & Jackson, T. L. (2001). Program burn algorithms based on detonation shock dynamics: Discrete approximations of detonation flows with discontinuous front models.
Journal of Computational Physics,
174, 870-902.
http://doi.org/10.1006/jcph.2001.6934
Blaik, M., & Christian, E. A. (1964). Pressure pulses of small explosions at great depths in the ocean
. 68th Meeting, Acoust. Soc. Am, Austin, Texas (1964).
https://doi.org/10.1121/1.1939301
Cole, R. H. (1948). Underwater explosion. Princeton University Press, New Jersey.
Handley, C. A., Lambourn, B. D., Whitworth, N. J., James, H. R., & Belfield, W. J. (2018). Understanding the shock and detonation response of high explosives at the continuum and meso scales.
Applied Physics Reviews,
5, 011303.
http://doi.org/10.1063/1.5018290
Hilliar, H. W. (1950). Experiments on the pressure wave thrown out by submarine explosions. Department of the Navy, Office of Naval Research, Washington, D.C., 86-158.
Kennard, E. H. (1950). Report on underwater explosions. Department of the Navy, Office of Naval Research, Washington, D.C., 159-208.
Miller, G. H., & Puckett, E. G. (1996). A high-order Godunov method for multiple condensed phases.
Journal of Computational Physics,
128(1), 134-164.
http://doi.org/10.1006/jcph.1996.0200
Penney, W. G., & Dasgupta, H. K. (1950). The pressure-time curve for underwater explosions (II). Department of the Navy, Office of Naval Research, Washington, D.C., 289-300.
Plooster, M. N. (1982). Blast effects from cylindrical explosive charges: Experimental measurements. Naval Report Centre, China Lake, California 93555.
Price, M. A., Nguyen, V. T., Hassan, O., & Morgan, K. (2015). A method for compressible multimaterial flows with condensed phase explosive detonation and airblast on unstructured grids.
Computers & Fluids, 111, 76-90.
http://doi.org/10.1016/j.compfluid.2014.05.001
Sheng Z., Hao Y., Liu J., Wang H., Gao Y. & Ma, F. (2023). A shockwave calculation method for aluminized explosive of deep water explosion based on the Kirkwood-Bethe model. Propellants, Explosives, Pyrotechnics, 48, e202200247.
https://doi.org/10.1002/prep.202200247
Wang, L., Currao, G. M. D., Han, F., Neely, A. J., Young, J., & Tian, F. B. (2017). An immersed boundary method for fluid–structure interaction with compressible multiphase flows.
Journal of Computational Physics,
346, 131-151.
http://doi.org/10.1016/j.jcp.2017.06.048
Yu, J., Liu, G. Z., Wang, J., & Wang, H. K. (2021a). An effective method for modeling the load of bubble jet in underwater explosion near the wall.
Ocean Engineering,
220, 108408.
http://doi.org/10.1016/j.oceaneng.2020.108408
Yu, J., Liu, J. H., Wang, H. K., Wang, J., Zhang, L. P., & Liu, G. Z. (2021b). Numerical simulation of underwater explosion cavitation characteristics based on phase transition model in compressible multicomponent fluids.
Ocean Engineering, 240, 109934.
http://doi.org/10.1016/j.oceaneng.2021.109934
Yu, J., Liu, J. H., Wang, H. K.,Wang, J., Zhou, Z. T., & Mao, H. B. (2022). Application of two-phase transition model in underwater explosion cavitation based on compressible multiphase flows.
AIP. Advances,
12, 025209.
http://doi.org/10.1063/5.0082209
Yu, J., Wang, J., Zhang, X. P., Hao, Y., Jiang, X. W., & Shen, C. (2024a). A high precision instantaneous detonation model (hp-IDM) for condensed energetic materials and its application in underwater explosions.
Journal of Applied Physics,
136, 044701.
https://doi.org/10.1063/5.0220493
Yu, J., Zhang, X. P., Chen, J. P., & Xu, Y. Q. (2024b). A high-order simulation method for compressible multiphase flows with condensed-phase explosive detonation in underwater explosions.
Physics of Fluids,
36, 016133.
http://doi.org/10.1063/5.0134567
Zhang, A. M., Li, S. M., Cui, P., Li, S., & Liu, Y. L. (2023). A unified theory for bubble dynamics.
Physics of Fluids,
35, 033323.
http://doi.org/10.1063/5.0123456