Study of Stage Gap for a 2-bladed 2-stage Savonius-like-hydro-kinetic Turbine Performance Involving End Plates and Overlapping

Document Type : Regular Article

Authors

Department of Mechanical Engineering, National Institute of Technology Silchar, Assam, India

10.47176/jafm.18.4.2924

Abstract

Savonius-like-hydrokinetic turbine (SLHT) is a revelation for small-scale (micro/pico) power generation from perennial rivers at low water velocities and low tip speed conditions. However, for its operation at such sites, efficiency is to be improved by design modifications and flow control. This work entails a flow control strategy that combines the mean flow with overlapping flow, gap flow between stages, and flow between end plates. Here, the performance of a two-bladed two stage SLHT with end plates and 15% blade overlapping is examined in a water channel with stage gaps in mm (0-20), low water velocities in m/s (0.45-0.65) under applied braking loads in g (100-1500). The results demonstrate that SLHT produces more power and torque under a low-stage gap as the brake load rises, reaching the highest hydrodynamic torque (0.056 Nm) during a maximum load of 1250 g. The minimal stage gap is 5 mm, turbine braking loading 1250 g, 0.248 TSR, and 0.55 m/s water velocity yield the highest power coefficient (0.058), which is greater than some published SLHT designs. Thus, as much as blade profile modifications, flow control through SLHT can be the future direction for further improvement of its performance.

Keywords

Main Subjects


Abbasi, K. R., Abbas, J., & Tufail, M. (2021). Revisiting electricity consumption, price, and real GDP: A modified sectoral level analysis from Pakistan. Energy Policy, 149, 112087. https://doi.org/10.1016/j.enpol.2020.112087
Alexander, A. J., & Holownia, B. P. (1978). Wind tunnel tests on a Savonius rotor. Journal of Wind Engineering and Industrial Aerodynamics, 3(4), 343-351. https://doi.org/10.1016/0167-6105(78)90037-5
Alizadeh, H., Jahangir, M. H., & Ghasempour, R. (2020). CFD-based improvement of Savonius type hydrokinetic turbine using optimized barrier at the low-speed flows. Ocean Engineering, 202, 107178. https://doi.org/10.1016/j.oceaneng.2020.107178
Bartl, J., Pierella, F., & Sætrana, L. (2012). Wake measurements behind an array of two model wind turbines. Energy Procedia, 24, 305-312. https://doi.org/10.1016/j.egypro.2012.06.113
Bazooyar, B., & Darabkhani, H. G. (2020). Design, manufacture and test of a micro-turbine renewable energy combustor. Energy Conversion and Management, 213, 112782. https://doi.org/10.1016/j.enconman.2020.112782
Chaudhari, V. N., & Shah, S. P. (2023). Numerical investigation on the performance of an innovative Airfoil-Bladed Savonius Hydrokinetic Turbine (ABSHKT) with deflector. International Journal of Thermofluids, 17, 100279. https://doi.org/10.1016/j.ijft.2023.100279
Chemengich, S. J., Kassab, S. Z., & Lotfy, E. R. (2022). Effect of the variations of the gap flow guides geometry on the savonius wind turbine performance: 2D and 3D studies. Journal of Wind Engineering and Industrial Aerodynamics, 222, 104920. https://doi.org/10.1016/j.jweia.2022.104920
Elbatran, A. H. A., Yaakob, O. B., & Ahmed, Y. M. (2021). Experimental investigation of a hydraulic turbine for hydrokinetic power generation in irrigation/rainfall channels. Journal of Marine Science and Application, 20, 144-155. https://link.springer.com/article/10.1007/s11804-020-00152-4
Elbatran, A. H., Ahmed, Y. M., & Shehata, A. S. (2017). Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine. Energy, 134, 566-584. https://doi.org/10.1016/j.energy.2017.06.041
Frikha, S., Driss, Z., Ayadi, E., Masmoudi, Z., & Abid, M. S. (2016). Numerical and experimental characterization of multi-stage Savonius rotors. Energy, 114, 382-404. https://doi.org/10.1016/j.energy.2016.08.017
Han, X., Liu, D., Xu, C., & Shen, W. Z. (2018). Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain. Renewable Energy, 126, 640-651. https://doi.org/10.1016/j.renene.2018.03.048
Healy, N., Stephens, J. C., & Malin, S. A. (2019). Embodied energy injustices: Unveiling and politicizing the transboundary harms of fossil fuel extractivism and fossil fuel supply chains. Energy Research & Social Science, 48, 219-234. https://doi.org/10.1016/j.erss.2018.09.016
Ibrahim, M. M., Mostafa, N. H., Osman, A. H., & Hesham, A. (2020). Performance analysis of a stand-alone hybrid energy system for desalination unit in Egypt. Energy Conversion and Management, 215, 112941. https://doi.org/10.1016/j.enconman.2020.112941
Jeon, K. S., Jeong, J. I., Pan, J. K., & Ryu, K. W. (2015). Effects of end plates with various shapes and sizes on helical Savonius wind turbines. Renewable Energy, 79, 167-176. https://doi.org/10.1016/j.renene.2014.11.035
Khan, M. N. I., Iqbal, T., Hinchey, M., & Masek, V. (2009). Performance of Savonius rotor as a water current turbine. The Journal of Ocean Technology, 4(2), 71-83. https://research.library.mun.ca/235/
Khan, Z. U., Ali, Z., & Uddin, E. (2022). Performance enhancement of vertical axis hydrokinetic turbine using novel blade profile. Renewable Energy, 188, 801-818. https://doi.org/10.1016/j.renene.2022.02.050
Kirke, B. K. (2011). Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines. Renewable Energy, 36(11), 3013-3022. https://doi.org/10.1016/j.renene.2011.03.036
Korprasertsak, N., & Leephakpreeda, T. (2016). Analysis and optimal design of wind boosters for Vertical Axis Wind Turbines at low wind speed. Journal of Wind Engineering and Industrial Aerodynamics, 159, 9-18. https://doi.org/10.1016/j.jweia.2016.10.007
Kumar, A., Saini, R. P., Saini, G., & Dwivedi, G. (2020). Effect of number of stages on the performance characteristics of modified Savonius hydrokinetic turbine. Ocean Engineering, 217, 108090. https://doi.org/10.1016/j.oceaneng.2020.108090
Mauro, S., Brusca, S., Lanzafame, R., & Messina, M. (2019). CFD modeling of a ducted Savonius wind turbine for the evaluation of the blockage effects on rotor performance. Renewable Energy, 141, 28-39. https://doi.org/10.1016/j.renene.2019.03.125
Modi, V. J., Roth, N. J., & Fernando, M. S. U. K. (1984). Optimum-configuration studies and prototype design of a wind-energy-operated irrigation system. Journal of Wind Engineering and Industrial Aerodynamics, 16(1), 85-96. https://doi.org/10.1016/0167-6105(84)90050-3
Mohammadi, M., Mohammadi, R., Ramadan, A., & Mohamed, M. H. (2018). Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization. Energy, 158, 592-606. https://doi.org/10.1016/j.energy.2018.06.072
Mosbahi, M., Ayadi, A., Chouaibi, Y., Driss, Z., & Tucciarelli, T. (2020). Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine. Renewable Energy, 162, 1087-1103. https://doi.org/10.1016/j.renene.2020.08.105
Mosbahi, M., Elgasri, S., Lajnef, M., Mosbahi, B., & Driss, Z. (2021). Performance enhancement of a twisted Savonius hydrokinetic turbine with an upstream deflector. International Journal of Green Energy, 18(1), 51-65. https://doi.org/10.1080/15435075.2020.1825444
Munson, B. R., Young, D. F., & Okiishi, T. H. (1995). Fundamentals of fluid mechanics. Oceanographic Literature Review, 10(42), 831. https://www.infona.pl/resource/bwmeta1.element.elsevier-013ce2bb-5df3-353d-9205-9c4162529c62/tab/summary
Nimvari, M. E., Fatahian, H., & Fatahian, E. (2020). Performance improvement of a Savonius vertical axis wind turbine using a porous deflector. Energy Conversion and Management, 220, 113062. https://doi.org/10.1016/j.enconman.2020.113062
Osama, S., Emam, M., Ookawara, S., & Ahmed, M. (2024). Enhancing the performance of vertical axis hydrokinetic Savonius turbines using a novel cambered hydrofoil profile for rotor blades. Ocean Engineering, 292, 116561. https://doi.org/10.1016/j.oceaneng.2023.116561
Patel, V., Bhat, G., Eldho, T. I., & Prabhu, S. V. (2017). Influence of overlap ratio and aspect ratio on the performance of Savonius hydrokinetic turbine. International Journal of Energy Research, 41(6), 829-844. https://doi.org/10.1002/er.3670
Perez, A., & Garcia-Rendon, J. J. (2021). Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia. Renewable Energy, 167, 146-161. https://doi.org/10.1016/j.renene.2020.11.067
Quaranta, E., & Davies, P. (2022). Emerging and innovative materials for hydropower engineering applications: Turbines, bearings, sealing, dams and waterways, and ocean power. Engineering, 8, 148-158. https://doi.org/10.1016/j.eng.2021.06.025
Quaranta, E., Bonjean, M., Cuvato, D., Nicolet, C., Dreyer, M., Gaspoz, A., ... & Bragato, N. (2020). Hydropower case study collection: Innovative low head and ecologically improved turbines, hydropower in existing infrastructures, hydropeaking reduction, digitalization and governing systems. Sustainability, 12(21), 8873. https://doi.org/10.3390/su12218873
Ridgill, M., Neill, S. P., Lewis, M. J., Robins, P. E., & Patil, S. D. (2021). Global riverine theoretical hydrokinetic resource assessment. Renewable Energy, 174, 654-665. https://doi.org/10.1016/j.renene.2021.04.109
Saha, U. K., & Rajkumar, M. J. (2006). On the performance analysis of Savonius rotor with twisted blades. Renewable Energy, 31(11), 1776-1788. https://doi.org/10.1016/j.renene.2005.08.030
Sahebzadeh, S., Rezaeiha, A., & Montazeri, H. (2020). Towards optimal layout design of vertical-axis wind-turbine farms: Double rotor arrangements. Energy Conversion and Management, 226, 113527. https://doi.org/10.1016/j.enconman.2020.113527
Salleh, M. B., Kamaruddin, N. M., & Mohamed-Kassim, Z. (2020). The effects of deflector longitudinal position and height on the power performance of a conventional Savonius turbine. Energy Conversion and Management, 226, 113584. https://doi.org/10.1016/j.enconman.2020.113584
Salleh, M. B., Kamaruddin, N. M., Mohamed-Kassim, Z., & Bakar, E. A. (2021). Experimental investigation on the characterization of self-starting capability of a 3-bladed Savonius hydrokinetic turbine using deflector plates. Ocean Engineering, 228, 108950. https://doi.org/10.1016/j.oceaneng.2021.108950
Sari, M. A., Badruzzaman, M., Cherchi, C., Swindle, M., Ajami, N., & Jacangelo, J. G. (2018). Recent innovations and trends in in-conduit hydropower technologies and their applications in water distribution systems. Journal of Environmental Management, 228, 416-428. https://doi.org/10.1016/j.jenvman.2018.08.078
Sarma, K. C., Biswas, A., & Misra, R. D. (2022). Experimental investigation of a two-bladed double stage Savonius-akin hydrokinetic turbine at low flow velocity conditions. Renewable Energy, 187, 958-973. https://doi.org/10.1016/j.renene.2022.02.011
Sarma, K. C., Biswas, A., Nath, B., & Misra, R. D. (2024). Effect of overlapping and space between stages of a three-bladed double-stage Savonius hydrokinetic turbine for low flow speed perennial river application. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 1177-1195. https://doi.org/10.1080/15567036.2023.2295521
Sarma, K. C., Nath, B., Biswas, A., & Misra, R. D. (2023). Design and performance investigation of a triple blade dual stage Savonius-alike hydrokinetic turbine from low flow stream reserves. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(4), 12099-12117. https://doi.org/10.1080/15567036.2023.2268572
Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews, 90, 275-291. https://doi.org/10.1016/j.rser.2018.03.065
Shamsuddin, M. S. M., & Kamaruddin, N. M. (2023). Experimental study on the characterization of the self-starting capability of a single and double-stage Savonius turbine. Results in Engineering, 17, 100854. https://doi.org/10.1016/j.rineng.2022.100854
Shashikumar, C. M., & Madav, V. (2021). Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation. Renewable Energy, 177, 1170-1197. https://doi.org/10.1016/j.renene.2021.05.086
Shashikumar, C. M., Honnasiddaiah, R., Hindasageri, V., & Madav, V. (2021a). Studies on application of vertical axis hydro turbine for sustainable power generation in irrigation channels with different bed slopes. Renewable Energy, 163, 845-857. https://doi.org/10.1016/j.renene.2020.09.015
Shashikumar, C. M., Vijaykumar, H., & Vasudeva, M. (2021b). Numerical investigation of conventional and tapered Savonius hydrokinetic turbines for low-velocity hydropower application in an irrigation channel. Sustainable Energy Technologies and Assessments, 43, 100871. https://doi.org/10.1016/j.seta.2020.100871
Sinsel, S. R., Riemke, R. L., & Hoffmann, V. H. (2020). Challenges and solution technologies for the integration of variable renewable energy sources—a review. Renewable Energy, 145, 2271-2285. https://doi.org/10.1016/j.renene.2019.06.147
Solangi, Y. A., Tan, Q., Mirjat, N. H., Valasai, G. D., Khan, M. W. A., & Ikram, M. (2019). An integrated Delphi-AHP and fuzzy TOPSIS approach toward ranking and selection of renewable energy resources in Pakistan. Processes, 7(2), 118. https://doi.org/10.3390/pr7020118
Tahani, M., Rabbani, A., Kasaeian, A., Mehrpooya, M., & Mirhosseini, M. (2017). Design and numerical investigation of Savonius wind turbine with discharge flow directing capability. Energy, 130, 327-338. https://doi.org/10.1016/j.energy.2017.04.125
Thakur, N., Biswas, A., Kumar, Y., & Basumatary, M. (2019). CFD analysis of performance improvement of the Savonius water turbine by using an impinging jet duct design. Chinese Journal of Chemical Engineering, 27(4), 794-801. https://doi.org/10.1016/j.cjche.2018.11.014
Thiyagaraj, J., Anbuchezhiyan, G., Mamidi, V. K., Barathiraja, R., & Sura, S. (2023). Dynamic characteristic studies of novel flexible flip-type Savonius hydrokinetic turbine. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.170
Thiyagaraj, J., Rahamathullah, I., Anbuchezhiyan, G., Barathiraja, R., & Ponshanmugakumar, A. (2021). Influence of blade numbers, overlap ratio and modified blades on performance characteristics of the savonius hydro-kinetic turbine. Materials Today: Proceedings, 46, 4047-4053. https://doi.org/10.1016/j.matpr.2021.02.568
Tiwari, G., Kumar, J., Prasad, V., & Patel, V. K. (2020). Utility of CFD in the design and performance analysis of hydraulic turbines—A review. Energy Reports, 6, 2410-2429. https://doi.org/10.1016/j.egyr.2020.09.004
Wang, Q., Luo, K., Wu, C., Mu, Y., Tan, J., & Fan, J. (2022). Diurnal impact of atmospheric stability on inter-farm wake and power generation efficiency at neighboring onshore wind farms in complex terrain. Energy Conversion and Management, 267, 115897. https://doi.org/10.1016/j.enconman.2022.115897
Wang, Q., Luo, K., Wu, C., Tan, J., He, R., Ye, S., & Fan, J. (2023). Inter-farm cluster interaction of the operational and planned offshore wind power base. Journal of Cleaner Production, 396, 136529. https://doi.org/10.1016/j.jclepro.2023.136529
Wang, Q., Su, M., Li, R., & Ponce, P. (2019). The effects of energy prices, urbanization and economic growth on energy consumption per capita in 186 countries. Journal of Cleaner Production, 225, 1017-1032. https://doi.org/10.1016/j.jclepro.2019.04.008
Wu, H. N., Chen, L. J., Yu, M. H., Li, W. Y., & Chen, B. F. (2012). On design and performance prediction of the horizontal-axis water turbine. Ocean Engineering, 50, 23-30. https://doi.org/10.1016/j.oceaneng.2012.04.003
Yosry, A. G., Fernández-Jiménez, A., Álvarez-Álvarez, E., & Marigorta, E. B. (2021). Design and characterization of a vertical-axis micro tidal turbine for low velocity scenarios. Energy Conversion and Management, 237, 114144. https://doi.org/10.1016/j.enconman.2021.114144
Zhang, Y., Kang, C., Zhao, H., & Kim, H. B. (2021). Effects of the deflector plate on performance and flow characteristics of a drag-type hydrokinetic rotor. Ocean Engineering, 238, 109760. https://doi.org/10.1016/j.oceaneng.2021.109760