Abbasi, K. R., Abbas, J., & Tufail, M. (2021). Revisiting electricity consumption, price, and real GDP: A modified sectoral level analysis from Pakistan.
Energy Policy,
149, 112087.
https://doi.org/10.1016/j.enpol.2020.112087
Alizadeh, H., Jahangir, M. H., & Ghasempour, R. (2020). CFD-based improvement of Savonius type hydrokinetic turbine using optimized barrier at the low-speed flows.
Ocean Engineering,
202, 107178.
https://doi.org/10.1016/j.oceaneng.2020.107178
Chaudhari, V. N., & Shah, S. P. (2023). Numerical investigation on the performance of an innovative Airfoil-Bladed Savonius Hydrokinetic Turbine (ABSHKT) with deflector.
International Journal of Thermofluids,
17, 100279.
https://doi.org/10.1016/j.ijft.2023.100279
Chemengich, S. J., Kassab, S. Z., & Lotfy, E. R. (2022). Effect of the variations of the gap flow guides geometry on the savonius wind turbine performance: 2D and 3D studies.
Journal of Wind Engineering and Industrial Aerodynamics,
222, 104920.
https://doi.org/10.1016/j.jweia.2022.104920
Elbatran, A. H., Ahmed, Y. M., & Shehata, A. S. (2017). Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine.
Energy,
134, 566-584.
https://doi.org/10.1016/j.energy.2017.06.041
Frikha, S., Driss, Z., Ayadi, E., Masmoudi, Z., & Abid, M. S. (2016). Numerical and experimental characterization of multi-stage Savonius rotors.
Energy,
114, 382-404.
https://doi.org/10.1016/j.energy.2016.08.017
Han, X., Liu, D., Xu, C., & Shen, W. Z. (2018). Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain.
Renewable Energy,
126, 640-651.
https://doi.org/10.1016/j.renene.2018.03.048
Healy, N., Stephens, J. C., & Malin, S. A. (2019). Embodied energy injustices: Unveiling and politicizing the transboundary harms of fossil fuel extractivism and fossil fuel supply chains.
Energy Research & Social Science,
48, 219-234.
https://doi.org/10.1016/j.erss.2018.09.016
Ibrahim, M. M., Mostafa, N. H., Osman, A. H., & Hesham, A. (2020). Performance analysis of a stand-alone hybrid energy system for desalination unit in Egypt.
Energy Conversion and Management,
215, 112941.
https://doi.org/10.1016/j.enconman.2020.112941
Jeon, K. S., Jeong, J. I., Pan, J. K., & Ryu, K. W. (2015). Effects of end plates with various shapes and sizes on helical Savonius wind turbines.
Renewable Energy,
79, 167-176.
https://doi.org/10.1016/j.renene.2014.11.035
Khan, M. N. I., Iqbal, T., Hinchey, M., & Masek, V. (2009). Performance of Savonius rotor as a water current turbine.
The Journal of Ocean Technology,
4(2), 71-83.
https://research.library.mun.ca/235/
Korprasertsak, N., & Leephakpreeda, T. (2016). Analysis and optimal design of wind boosters for Vertical Axis Wind Turbines at low wind speed.
Journal of Wind Engineering and Industrial Aerodynamics,
159, 9-18.
https://doi.org/10.1016/j.jweia.2016.10.007
Kumar, A., Saini, R. P., Saini, G., & Dwivedi, G. (2020). Effect of number of stages on the performance characteristics of modified Savonius hydrokinetic turbine.
Ocean Engineering,
217, 108090.
https://doi.org/10.1016/j.oceaneng.2020.108090
Mauro, S., Brusca, S., Lanzafame, R., & Messina, M. (2019). CFD modeling of a ducted Savonius wind turbine for the evaluation of the blockage effects on rotor performance.
Renewable Energy,
141, 28-39.
https://doi.org/10.1016/j.renene.2019.03.125
Modi, V. J., Roth, N. J., & Fernando, M. S. U. K. (1984). Optimum-configuration studies and prototype design of a wind-energy-operated irrigation system.
Journal of Wind Engineering and Industrial Aerodynamics,
16(1), 85-96.
https://doi.org/10.1016/0167-6105(84)90050-3
Mohammadi, M., Mohammadi, R., Ramadan, A., & Mohamed, M. H. (2018). Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization.
Energy,
158, 592-606.
https://doi.org/10.1016/j.energy.2018.06.072
Mosbahi, M., Ayadi, A., Chouaibi, Y., Driss, Z., & Tucciarelli, T. (2020). Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine.
Renewable Energy,
162, 1087-1103.
https://doi.org/10.1016/j.renene.2020.08.105
Mosbahi, M., Elgasri, S., Lajnef, M., Mosbahi, B., & Driss, Z. (2021). Performance enhancement of a twisted Savonius hydrokinetic turbine with an upstream deflector.
International Journal of Green Energy,
18(1), 51-65.
https://doi.org/10.1080/15435075.2020.1825444
Nimvari, M. E., Fatahian, H., & Fatahian, E. (2020). Performance improvement of a Savonius vertical axis wind turbine using a porous deflector.
Energy Conversion and Management,
220, 113062.
https://doi.org/10.1016/j.enconman.2020.113062
Osama, S., Emam, M., Ookawara, S., & Ahmed, M. (2024). Enhancing the performance of vertical axis hydrokinetic Savonius turbines using a novel cambered hydrofoil profile for rotor blades.
Ocean Engineering,
292, 116561.
https://doi.org/10.1016/j.oceaneng.2023.116561
Patel, V., Bhat, G., Eldho, T. I., & Prabhu, S. V. (2017). Influence of overlap ratio and aspect ratio on the performance of Savonius hydrokinetic turbine.
International Journal of Energy Research,
41(6), 829-844.
https://doi.org/10.1002/er.3670
Perez, A., & Garcia-Rendon, J. J. (2021). Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia.
Renewable Energy,
167, 146-161.
https://doi.org/10.1016/j.renene.2020.11.067
Quaranta, E., & Davies, P. (2022). Emerging and innovative materials for hydropower engineering applications: Turbines, bearings, sealing, dams and waterways, and ocean power.
Engineering,
8, 148-158.
https://doi.org/10.1016/j.eng.2021.06.025
Quaranta, E., Bonjean, M., Cuvato, D., Nicolet, C., Dreyer, M., Gaspoz, A., ... & Bragato, N. (2020). Hydropower case study collection: Innovative low head and ecologically improved turbines, hydropower in existing infrastructures, hydropeaking reduction, digitalization and governing systems.
Sustainability,
12(21), 8873.
https://doi.org/10.3390/su12218873
Ridgill, M., Neill, S. P., Lewis, M. J., Robins, P. E., & Patil, S. D. (2021). Global riverine theoretical hydrokinetic resource assessment.
Renewable Energy,
174, 654-665.
https://doi.org/10.1016/j.renene.2021.04.109
Sahebzadeh, S., Rezaeiha, A., & Montazeri, H. (2020). Towards optimal layout design of vertical-axis wind-turbine farms: Double rotor arrangements.
Energy Conversion and Management,
226, 113527.
https://doi.org/10.1016/j.enconman.2020.113527
Salleh, M. B., Kamaruddin, N. M., & Mohamed-Kassim, Z. (2020). The effects of deflector longitudinal position and height on the power performance of a conventional Savonius turbine.
Energy Conversion and Management,
226, 113584.
https://doi.org/10.1016/j.enconman.2020.113584
Salleh, M. B., Kamaruddin, N. M., Mohamed-Kassim, Z., & Bakar, E. A. (2021). Experimental investigation on the characterization of self-starting capability of a 3-bladed Savonius hydrokinetic turbine using deflector plates.
Ocean Engineering,
228, 108950.
https://doi.org/10.1016/j.oceaneng.2021.108950
Sari, M. A., Badruzzaman, M., Cherchi, C., Swindle, M., Ajami, N., & Jacangelo, J. G. (2018). Recent innovations and trends in in-conduit hydropower technologies and their applications in water distribution systems.
Journal of Environmental Management,
228, 416-428.
https://doi.org/10.1016/j.jenvman.2018.08.078
Sarma, K. C., Biswas, A., & Misra, R. D. (2022). Experimental investigation of a two-bladed double stage Savonius-akin hydrokinetic turbine at low flow velocity conditions.
Renewable Energy,
187, 958-973.
https://doi.org/10.1016/j.renene.2022.02.011
Sarma, K. C., Biswas, A., Nath, B., & Misra, R. D. (2024). Effect of overlapping and space between stages of a three-bladed double-stage Savonius hydrokinetic turbine for low flow speed perennial river application.
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,
46(1), 1177-1195.
https://doi.org/10.1080/15567036.2023.2295521
Sarma, K. C., Nath, B., Biswas, A., & Misra, R. D. (2023). Design and performance investigation of a triple blade dual stage Savonius-alike hydrokinetic turbine from low flow stream reserves.
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,
45(4), 12099-12117.
https://doi.org/10.1080/15567036.2023.2268572
Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions.
Renewable and Sustainable Energy Reviews,
90, 275-291.
https://doi.org/10.1016/j.rser.2018.03.065
Shamsuddin, M. S. M., & Kamaruddin, N. M. (2023). Experimental study on the characterization of the self-starting capability of a single and double-stage Savonius turbine.
Results in Engineering,
17, 100854.
https://doi.org/10.1016/j.rineng.2022.100854
Shashikumar, C. M., & Madav, V. (2021). Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation.
Renewable Energy,
177, 1170-1197.
https://doi.org/10.1016/j.renene.2021.05.086
Shashikumar, C. M., Honnasiddaiah, R., Hindasageri, V., & Madav, V. (2021a). Studies on application of vertical axis hydro turbine for sustainable power generation in irrigation channels with different bed slopes.
Renewable Energy,
163, 845-857.
https://doi.org/10.1016/j.renene.2020.09.015
Shashikumar, C. M., Vijaykumar, H., & Vasudeva, M. (2021b). Numerical investigation of conventional and tapered Savonius hydrokinetic turbines for low-velocity hydropower application in an irrigation channel.
Sustainable Energy Technologies and Assessments,
43, 100871.
https://doi.org/10.1016/j.seta.2020.100871
Sinsel, S. R., Riemke, R. L., & Hoffmann, V. H. (2020). Challenges and solution technologies for the integration of variable renewable energy sources—a review.
Renewable Energy,
145, 2271-2285.
https://doi.org/10.1016/j.renene.2019.06.147
Solangi, Y. A., Tan, Q., Mirjat, N. H., Valasai, G. D., Khan, M. W. A., & Ikram, M. (2019). An integrated Delphi-AHP and fuzzy TOPSIS approach toward ranking and selection of renewable energy resources in Pakistan.
Processes,
7(2), 118.
https://doi.org/10.3390/pr7020118
Tahani, M., Rabbani, A., Kasaeian, A., Mehrpooya, M., & Mirhosseini, M. (2017). Design and numerical investigation of Savonius wind turbine with discharge flow directing capability.
Energy,
130, 327-338.
https://doi.org/10.1016/j.energy.2017.04.125
Thakur, N., Biswas, A., Kumar, Y., & Basumatary, M. (2019). CFD analysis of performance improvement of the Savonius water turbine by using an impinging jet duct design.
Chinese Journal of Chemical Engineering,
27(4), 794-801.
https://doi.org/10.1016/j.cjche.2018.11.014
Thiyagaraj, J., Anbuchezhiyan, G., Mamidi, V. K., Barathiraja, R., & Sura, S. (2023). Dynamic characteristic studies of novel flexible flip-type Savonius hydrokinetic turbine.
Materials Today: Proceedings.
https://doi.org/10.1016/j.matpr.2023.03.170
Thiyagaraj, J., Rahamathullah, I., Anbuchezhiyan, G., Barathiraja, R., & Ponshanmugakumar, A. (2021). Influence of blade numbers, overlap ratio and modified blades on performance characteristics of the savonius hydro-kinetic turbine.
Materials Today: Proceedings,
46, 4047-4053.
https://doi.org/10.1016/j.matpr.2021.02.568
Tiwari, G., Kumar, J., Prasad, V., & Patel, V. K. (2020). Utility of CFD in the design and performance analysis of hydraulic turbines—A review.
Energy Reports,
6, 2410-2429.
https://doi.org/10.1016/j.egyr.2020.09.004
Wang, Q., Luo, K., Wu, C., Mu, Y., Tan, J., & Fan, J. (2022). Diurnal impact of atmospheric stability on inter-farm wake and power generation efficiency at neighboring onshore wind farms in complex terrain.
Energy Conversion and Management,
267, 115897.
https://doi.org/10.1016/j.enconman.2022.115897
Wang, Q., Luo, K., Wu, C., Tan, J., He, R., Ye, S., & Fan, J. (2023). Inter-farm cluster interaction of the operational and planned offshore wind power base.
Journal of Cleaner Production,
396, 136529.
https://doi.org/10.1016/j.jclepro.2023.136529
Wang, Q., Su, M., Li, R., & Ponce, P. (2019). The effects of energy prices, urbanization and economic growth on energy consumption per capita in 186 countries.
Journal of Cleaner Production,
225, 1017-1032.
https://doi.org/10.1016/j.jclepro.2019.04.008
Wu, H. N., Chen, L. J., Yu, M. H., Li, W. Y., & Chen, B. F. (2012). On design and performance prediction of the horizontal-axis water turbine.
Ocean Engineering,
50, 23-30.
https://doi.org/10.1016/j.oceaneng.2012.04.003
Yosry, A. G., Fernández-Jiménez, A., Álvarez-Álvarez, E., & Marigorta, E. B. (2021). Design and characterization of a vertical-axis micro tidal turbine for low velocity scenarios.
Energy Conversion and Management,
237, 114144.
https://doi.org/10.1016/j.enconman.2021.114144
Zhang, Y., Kang, C., Zhao, H., & Kim, H. B. (2021). Effects of the deflector plate on performance and flow characteristics of a drag-type hydrokinetic rotor.
Ocean Engineering,
238, 109760.
https://doi.org/10.1016/j.oceaneng.2021.109760