Unsteady Flow Mechanisms of the Stability Improvement for an Optimized Compressor

Document Type : Regular Article

Authors

1 School of Mechanical Engineering, Tianjin University, 300350 Tianjin, China

2 National Key Laboratory of Vehicle Power System, Tianjin University, 300350 Tianjin, China

3 School of Mechanical Engineering, Tianjin University of Commerce, 300134 Tianjin, China

10.47176/jafm.18.4.3056

Abstract

Radial compressor is a crucial component of turbocharging systems in aviation engines. Enhancing flow stability of radial compressor contributes to performances improvement of engines. Ported shroud (P-S) casing-treatment can effectively broaden the compressors flow stability range. However, the unsteady mechanisms of the P-S are still unclear. In this study, a collaborative optimization of the P-S and the impeller-diffuser is firstly carried out. The results show that the optimized compressor exhibits higher efficiency and larger flow stability range than the original and the solid-casing compressors. Then, the unsteady mechanisms of the flow stability enhancement for the optimized compressor are analyzed by the dynamic-mode-decomposition (DMD) method. It is found that the decrease of the energy proportion of the inherent mode and the increase of the low-frequency multi-scale modes are correlated to the flow instability of the compressor. The increased recirculating flow rate of the optimized compressor has removed more tip leakage flow (TLF) and double leakage flow (DLF) in the impeller inducer shroud, and then reduces the interplay among the TLF, the DLF and the leading-edge (LE) shock wave. Therefore, the generation of low-frequency multi-scale modes is suppressed, while the inherent modes are intensified. Consequently, the flow stability of the compressor is enhanced. This study may offer a new approach to enhance compressor stability by adjusting the energy proportions of inherent modes and low-frequency multi-scale modes. 

Keywords

Main Subjects


Boccazzi, A., Sala, R., & Gaetani, P. (2011). Influence of the diffuser vane setting angle on the flow field in a radial pump. Proceedings of the 9th European Turbomachinery Conference. Istanbul: ETC (pp. 721-731). https://torroja.dmt.upm.es/congresos/etc9_2011/pdf/papers/2011-ETC_9-Paper_133-COLOR.pdf
Cios, K. J., Pedrycz, W., Swiniarski, R. W. (2007). Data mining and knowledge discovery. Springer Science & Business Media. https://link.springer.com/chapter/10.1007/978-1-4615-5589-6_1
Ding, S., Chen, S., Wang, S., & Wang, Z. (2022). Flow mechanism of self-recirculating casing treatment in a low-reaction transonic compressor rotor. Aerospace Science and Technology130, 107925. https://doi.org/10.1016/j.ast.2022.107925
Favaretto, C. F. F., Anderson, M. R., Li, S., & Hu, L. (2018, June). Development of a meanline model for preliminary design of recirculating casing treatment in turbocharger compressors. Turbo Expo: Power for Land, Sea, and Air (Vol. 51173, p. V008T26A006). American Society of Mechanical Engineers. https://doi.org/10.1115/GT2018-75717
Hazy, R. H., & Xu, L. (2009). Numerical investigation of the effects of leading Edge sweep in a small transonic impeller. 8th European Turbomachinery Conference. https://scholar.google.com/scholar
He, X., & Zheng, X. (2017). Mechanisms of sweep on the performance of transonic centrifugal compressor impellers. Applied Sciences7(10), 1081. https://doi.org/10.3390/app7101081
Huang, G., Yang, Y., Hong, S., Liu, Z., & Du, S. (2020). A new unsteady casing treatment for micro centrifugal compressors to enlarge stall margin. Aerospace Science and Technology106, 106176. https://doi.org/10.1016/j.ast.2020.106176
Khaleghi, H. (2020). A new approach of endwall recirculation in axial compressors. Aerospace Science and Technology98, 105704. https://doi.org/10.1016/j.ast.2020.105704
Kou, J., & Zhang, W. (2017). An improved criterion to select dominant modes from dynamic mode decomposition. European Journal of Mechanics-B/Fluids62, 109-129. https://doi.org/10.1016/j.euromechflu.2016.11.015
Li, X., Liu, Z., & Lin, Y. (2017). Multipoint and multiobjective optimization of a centrifugal compressor impeller based on genetic algorithm. Mathematical Problems in Engineering2017(1), 6263274. https://doi.org/10.1155/2017/6263274
Li, X., Liu, Z., & Zhao, Y. (2022a). Redesign of casing treatment for a transonic centrifugal compressor based on a hybrid global optimization method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science236(7), 3398-3417. https://doi.org/10.1177/09544062211039878
Li, X., Liu, Z., Zhao, M., Zhao, Y., & He, Y. (2022b). Stability improvement without efficiency penalty of a transonic centrifugal compressor by casing treatment and impeller/diffuser coupling optimization. Aerospace Science and Technology127, 107685. https://doi.org/10.1016/j.ast.2022.107685
Li, X., Zhao, Y., & Liu, Z. (2019). A novel global optimization algorithm and data-mining methods for turbomachinery design. Structural and Multidisciplinary Optimization60, 581-612. https://link.springer.com/article/10.1007/s00158-019-02227-5
Li, X., Zhao, Y., Liu, Z., & Zhao, M. (2021). Dynamic mode decomposition analysis of the flow characteristics in a centrifugal compressor with vaned diffuser. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy235(1), 154-168. https://doi.org/10.1177/0957650920913464
Lin, F., & Chen, J. (2018). Oscillatory tip leakage flows and stability enhancement in axial compressors. International Journal of Rotating Machinery2018(1), 9076472. https://doi.org/10.1155/2018/9076472
Lu, B., Zhu, M., Teng, J., & Qiang, X. (2021). Design strategy of axial slot casing treatment for a transonic compressor rotor based on parametric analysis. Aerospace Science and Technology119, 107142. https://doi.org/10.1016/j.ast.2021.107142
Lyu, Z., Kou, J., & Zhang, W. (2022). An experimental modal testing method for subcritical flow around a cylinder. Physics of Fluids34(8). https://doi.org/10.1063/5.0101624
Peng, W., Zou, X., & Qin, S. (2021). Design and experiment of casing treatment for a centrifugal compressor. International Journal of Turbo & Jet-Engines38(3), 233-244. https://doi.org/10.1515/tjj-2018-0009
Schmid, P. J. (2010). Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics656, 5-28. https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/dynamic-mode-decomposition-of-numerical-and-experimental-data/AA4C763B525515AD4521A6CC5E10DBD4
Sesterhenn, J., & Shahirpour, A. (2019). A characteristic dynamic mode decomposition. Theoretical and Computational Fluid Dynamics33, 281-305. https://link.springer.com/article/10.1007/s00162-019-00494-y
Shu, M., Yang, M., Deng, K., Zheng, X., & Martinez-Botas, R. F. (2018). Performance analysis of a centrifugal compressor based on circumferential flow distortion induced by volute. Journal of Engineering for Gas Turbines and Power140(12), 122603. https://doi.org/10.1115/1.4040681
Taira, K., Brunton, S. L., Dawson, S. T., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt, O. T., Gordeyev, S., Theofilis, V., & Ukeiley, L. S. (2017). Modal analysis of fluid flows: An overview. Aiaa Journal55(12), 4013-4041. https://doi.org/10.2514/1.J056060
Tamaki, H. (2012). Effect of recirculation device with counter swirl vane on performance of high pressure ratio centrifugal compressor. Turbo Expo: Power for Land, Sea, and Air. https://doi.org/10.1115/1.4004820
Tiainen, J., Grönman, A., Jaatinen-Värri, A., & Backman, J. (2017). Flow control methods and their applicability in low-Reynolds-number centrifugal compressors—a review. International Journal of Turbomachinery, Propulsion and Power3(1), 2. https://doi.org/10.3390/ijtpp3010002
Trébinjac, I., Kulisa, P., Bulot, N., & Rochuon, N. (2009). Effect of unsteadiness on the performance of a transonic centrifugal compressor stage. Turbo Expo: Power for Land, Sea, and Air. 43161, pp.1835-1845. https://doi.org/10.1115/1.3070575
Vo, H. D., Tan, C. S., & Greitzer, E. M. (2008). Criteria for spike initiated rotating stall. Turbo Expo: Power for Land, Sea, and Air.  47306, pp.155-165. https://doi.org/10.1115/1.2750674
Wang, W., Chu, W., & Zhang, H. (2018). Mechanism study of performance enhancement in a subsonic axial flow compressor with recirculating casing treatment. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering232(4), 680-693. https://doi.org/10.1177/0954410016687140
Wu, Z., Brunton, S. L., & Revzen, S. (2021). Challenges in dynamic mode decomposition. Journal of the Royal Society Interface18(185), 20210686. https://doi.org/10.1098/rsif.2021.0686
Xu, L., Liu, Z., Li, X., Zhao, M., & Zhao, Y. (2023a). An improved mode time coefficient for dynamic mode decomposition. Physics of Fluids35(10). https://doi.org/10.1063/5.0166272
Xu, L., Liu, Z., Li, X., Zhao, M., Zhao, Y., & Zhou, T. (2023b). Dynamic mode characteristics of flow instabilities in a centrifugal compressor impeller. Aerospace Science and Technology142, 108707. https://doi.org/10.1016/j.ast.2023.108707
Yamada, K., Kikuta, H., Furukawa, M., Gunjishima, M., & Hara, Y. (2013). Effects of tip clearance on the stall inception process in an axial compressor rotor. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 55249: V06CT42A035. https://doi.org/10.1115/GT2013-95479
Yamada, K., Kikuta, H., Iwakiri, K. I., Furukawa, M., Gunjishima, S. (2012). An explanation for flow features of spike-type stall inception in an axial compressor rotor. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 44748, pp.2663-2675. https://doi.org/10.1115/1.4007570
Yan, S., & Chu, W. (2021). The improvement of transonic compressor performance by the self-circulating casing treatment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science235(7), 1165-1176. https://doi.org/10.1177/0954406220942261
Yang, H., Nuernberger, D., Nicke, E., & Weber, A. (2003, January). Numerical investigation of casing treatment mechanisms with a conservative mixed-cell approach. Turbo Expo: Power for Land, Sea, and Air (Vol. 36894, pp. 961-974). https://asmedigitalcollection.asme.org/GT/proceedings-abstract/GT2003/961/299470
Zamiri, A., Lee, B. J., & Chung, J. T. (2017). Numerical evaluation of transient flow characteristics in a transonic centrifugal compressor with vaned diffuser. Aerospace Science and Technology70, 244-256. https://doi.org/10.1016/j.ast.2017.08.003
Zhang, X., Lu, X., Han, G., Xu, G., & Zhu, J. (2014). Design and Experimental Validation of a High-Pressure Ratio Centrifugal Compressor. Gas Turbine Technology27(4), 31-36. https://www.researchgate.net
Zhao, Y., Liu, Z., Fu, L., Zhao, M., & Li, X. (2023). Redesign of a turbocharger compressor based on multi-component full-passage optimization. Aerospace Science and Technology142, 108644. https://doi.org/10.1016/j.ast.2023.108644
Zhou, T., Liu, Z., Li, X., Zhao, M., & Zhao, Y. (2021). Thermodynamic design space data-mining and multi-objective optimization of SCO2 Brayton cycles. Energy Conversion and Management249, 114844. https://doi.org/10.1016/j.enconman.2021.114844