Numerical Simulations of the Effect on Aerodynamic Performances of the Inter-propeller Distance in a Contra-rotating Propeller

Document Type : Regular Article

Authors

1 University of Saâd Dahleb Blida 1, Ouled Yaïch, Blida, 09100, Algeria

2 Renewable Energies Development Centre, Bouzareah, Algiers, 16340, Algeria

10.47176/jafm.18.4.3052

Abstract

We investigate the aerodynamics of low-Reynolds-number contrarotating propellers (CRPs) through numerical simulations. This field has gained increasing relevance owing to advancements in unmanned aerial vehicle technologies. The primary objective of this study was to evaluate the effect of interpropeller distance on the aerodynamic performance of CRPs, measured using the thrust coefficient (CT ), power coefficient (Cp) , and efficiency (η). Transient three-dimensional computational fluid dynamics simulations employing the unsteady Reynolds-averaged Navier–Stokes equations coupled with the k–ε turbulence model were conducted on an isolated propeller at various advance ratios. The results were then compared with the experimental data from a similarly shaped propeller. Simulations of different CRP interpropeller distances were performed with OpenFOAM software. The results indicated that increasing the interpropeller distance significantly enhances thrust, with a corresponding slight increase in efficiency.

Keywords

Main Subjects


Azizan, N. N., & Sapit, A. (2022). Airflow characteristic of UAV Quadcopter propeller blade using computational fluid dynamics (CFD). Progress in Aerospace and Aviation Technology, 2(2) , 8-16. http://dx.doi.org/10.30880/paat.2022.02.02.002
Brandt, J. B., & Selig, M. S. (2011). Propeller Performance Data at Low Reynolds Numbers [Conference session]. 49th AIAA Aerospace Sciences Meeting, Orlando, FLA, United States. http://dx.doi.org/10.2514/6.2011-1255
Colley, E. & Gourlay, T. (2012). Analysis of Flow around a Ship Propeller using OpenFOAM. Technical report, Curtin University Perth, Western Australia. https://cmst.curtin.edu.au/wp-content/uploads/sites/4/2016/05/colley_ea monn_2012_analysis_of_flow.pdf
Feng, F., Geng, C., Guo, T., Huang, Q. Y., & Hu, J. (2017). Numerical Simulation of Contra Rotating Propellers [Conference session]. International Conference on Manufacturing Engineering and Intelligent Materials (ICMEIM 2017), Guangzhou, China. https://doi.org/10.2991/icmeim-17.2017.92
Grassi, D., Brizzolara, S., Viviani, M., Savio, L., & Caviglia, S. (2010). Design and analysis of counter-rotating propellers-comparison of numerical and experimental results. Journal of Hydrodynamics, 22(Suppl 1), 553-559. https://doi.org/10.1016/S1001-6058(09)60254-7
Greenshields, C. J. (2015). OpenFOAM, The Open Source CFD Toolbox, Programmer's Guide. Version 3.0.1. OpenFOAM Foundation Ltd.
Launder, B. E., & Spalding, D. P. (1974). The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289. http://dx.doi.org/10.1016/0045-7825(74)90029-2
Liu, S., Arabnejad, M., & Nilsson, H. (2017). Implementation of a complete wall function for the standard k− ϵ turbulence model in OpenFOAM 4.0. Technical report, University of Stavanger. https://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2016/ShengnanLiu/FinalReport-Shengnan.pdf
Lopez, J., & Juando, A. (2023). Development of standardized series of counter-rotating propellers with special interest in hydrofoil navigation [Conference session]. 25th Numerical Towing Tank Symposium (NuTTS), Ericeira, Portugal. https://blueoasis.pt/wp-content/uploads/2023/10/Nutts2023_proceedings_v4.pdf
Pérez, G., A. M., Villegas, S., J. S., López, O. D., Suárez, C., L., & Escobar, J. A. (2019). Numerical and experimental estimation of the efficiency of a quadcopter rotor operating at hover. Energies, 12(2). http://dx.doi.org/10.3390/en12020261
Rhee, S. H., & Joshi, S. (2005). Computational validation for flow around a marine propeller using unstructured mesh based navier-stokes solver. JSME International Journal Series B, 48 (3), 562-570. https://doi.org/10.1299/jsmeb.48.562
Russo, N., Marano, A. D., Gagliardi, G. M., Guida, M., Pollito, T., & Marulo, F. (2023). Thrust and noise experimental assessment on counter-rotating coaxial rotors. Aerospace, 10(6). https://doi.org/10.3390/aerospace10060535
Satrio, D., Utama, I. K., & Mukhtasor. (2018). The influence of time step setting in on the CFD simulation result of vertical axis tidal current turbine. Journal of Mechanical Engineering and Sciences, 12(1), 3399-3409. https://doi.org/10.15282/jmes.12.1.2018.9.0303
Silvestre, M., Morgado, J., Alves, P., Santos, P., Gamboa, P., & Páscoa, J. C. (2015). Propeller Performance measurements at low reynolds numbers. International Journal of Mechanics, 9(9), 154-166. https://www.naun.org/main/NAUN/mechanics/2015/a372003-136.pdf
Stajuda, M., Karczewski, M., Obidowski, D., & Jozvik, K. (2016). Development of a CFD model for propeller simulation. Mechanics and Mechanical Engineering, 20 (4), 579-593. https://kdm.p.lodz.pl/sites/k13/files/manual/articles/2016/4/20_4_15.pdf
Stokkermans, T. C., van Arnhem, N., Sinnige, T., & Veldhuis, L. L. (2018). Validation and comparison of RANS propeller modeling methods for tip-mounted applications. AIAA Journal 57(3), 1-15. http://dx.doi.org/10.2514/1.J057398
Su, S., Wang, S., Cao, J., & Feng, D. (2019). Prediction of hydrodynamic characteristics of combined propellers based on CFD method [Conference session]. 3rd International Conference on Fluid Mechanics and Industrial Applications. Taiyun, China. Journal of Physics: Conf. Series 1300 012016. 29–30 June 2019, Taiyun, China. https://doi.org/10.1088/1742-6596/1300/1/012016
Thiele, M., Obster, M., & Hornung, M. (2019). Aerodynamic Modeling of Coaxial Counter-Rotating UAV Propellers [Conference session]. 8th Biennial Autonomous VTOL Technical Meeting. Mesa, Arizona, United States. https://mediatum.ub.tum.de/doc/1473749/document.pdf
Triet, P. M., Thien, P. Q., & Hieu, N. K. (2018). CFD simulation for the Wageningen B-Series propeller characteristics in open-water condition using k-epsilon turbulence model. Science and Technology Development Journal, 1 (1), 35-42. https://doi.org/10.15419/stdjet.v1i1.526
Wenhui, Y., & Kun, Z. (2023). Effects of Stage Spacing on Contra-Rotating Propeller Aerodynamic Interactions [Conference session]. 2022 International Conference on Defence Technology (2022 ICDT). Changsha, China. Journal of Physics Conference Series 2478(12):122013, https://doi.org/10.1088/1742-6596/2478/12/122013
Xu, J., Yu, J., Lu, X., Long, Z., Xu, Y., & Sun, H. (2024). Aerodynamic performance and numerical analysis of the coaxial contra-rotating propeller lift system in eVTOL vehicles. Mathematics, 12(7). http://dx.doi.org/10.3390/math12071056