Azizan, N. N., & Sapit, A. (2022). Airflow characteristic of UAV Quadcopter propeller blade using computational fluid dynamics (CFD).
Progress in Aerospace and Aviation Technology, 2(2) , 8-16.
http://dx.doi.org/10.30880/paat.2022.02.02.002
Brandt, J. B., & Selig, M. S. (2011).
Propeller Performance Data at Low Reynolds Numbers [Conference session]. 49th AIAA Aerospace Sciences Meeting, Orlando, FLA, United States.
http://dx.doi.org/10.2514/6.2011-1255
Feng, F., Geng, C., Guo, T., Huang, Q. Y., & Hu, J. (2017).
Numerical Simulation of Contra Rotating Propellers [Conference session]. International Conference on Manufacturing Engineering and Intelligent Materials (ICMEIM 2017), Guangzhou, China.
https://doi.org/10.2991/icmeim-17.2017.92
Grassi, D., Brizzolara, S., Viviani, M., Savio, L., & Caviglia, S. (2010). Design and analysis of counter-rotating propellers-comparison of numerical and experimental results.
Journal of Hydrodynamics,
22(Suppl 1), 553-559.
https://doi.org/10.1016/S1001-6058(09)60254-7
Greenshields, C. J. (2015). OpenFOAM, The Open Source CFD Toolbox, Programmer's Guide. Version 3.0.1. OpenFOAM Foundation Ltd.
Pérez, G., A. M., Villegas, S., J. S., López, O. D., Suárez, C., L., & Escobar, J. A. (2019). Numerical and experimental estimation of the efficiency of a quadcopter rotor operating at hover.
Energies, 12(2).
http://dx.doi.org/10.3390/en12020261
Rhee, S. H., & Joshi, S. (2005). Computational validation for flow around a marine propeller using unstructured mesh based navier-stokes solver.
JSME International Journal Series B, 48 (3), 562-570.
https://doi.org/10.1299/jsmeb.48.562
Russo, N., Marano, A. D., Gagliardi, G. M., Guida, M., Pollito, T., & Marulo, F. (2023). Thrust and noise experimental assessment on counter-rotating coaxial rotors.
Aerospace, 10(6).
https://doi.org/10.3390/aerospace10060535
Satrio, D., Utama, I. K., & Mukhtasor. (2018). The influence of time step setting in on the CFD simulation result of vertical axis tidal current turbine.
Journal of Mechanical Engineering and Sciences,
12(1), 3399-3409.
https://doi.org/10.15282/jmes.12.1.2018.9.0303
Silvestre, M., Morgado, J., Alves, P., Santos, P., Gamboa, P., & Páscoa, J. C. (2015). Propeller Performance measurements at low reynolds numbers.
International Journal of Mechanics, 9(9), 154-166.
https://www.naun.org/main/NAUN/mechanics/2015/a372003-136.pdf
Stokkermans, T. C., van Arnhem, N., Sinnige, T., & Veldhuis, L. L. (2018). Validation and comparison of RANS propeller modeling methods for tip-mounted applications.
AIAA Journal 57(3), 1-15.
http://dx.doi.org/10.2514/1.J057398
Su, S., Wang, S., Cao, J., & Feng, D. (2019).
Prediction of hydrodynamic characteristics of combined propellers based on CFD method [Conference session]. 3rd International Conference on Fluid Mechanics and Industrial Applications. Taiyun, China.
Journal of Physics: Conf. Series 1300 012016. 29–30 June 2019, Taiyun, China. https://doi.org/10.1088/1742-6596/1300/1/012016
Thiele, M., Obster, M., & Hornung, M. (2019).
Aerodynamic Modeling of Coaxial Counter-Rotating UAV Propellers [Conference session]. 8th Biennial Autonomous VTOL Technical Meeting. Mesa, Arizona, United States.
https://mediatum.ub.tum.de/doc/1473749/document.pdf
Triet, P. M., Thien, P. Q., & Hieu, N. K. (2018). CFD simulation for the Wageningen B-Series propeller characteristics in open-water condition using k-epsilon turbulence model.
Science and Technology Development Journal, 1 (1), 35-42.
https://doi.org/10.15419/stdjet.v1i1.526
Wenhui, Y., & Kun, Z. (2023).
Effects of Stage Spacing on Contra-Rotating Propeller Aerodynamic Interactions [Conference session]. 2022 International Conference on Defence Technology (2022 ICDT). Changsha, China.
Journal of Physics Conference Series 2478(12):122013, https://doi.org/10.1088/1742-6596/2478/12/122013
Xu, J., Yu, J., Lu, X., Long, Z., Xu, Y., & Sun, H. (2024). Aerodynamic performance and numerical analysis of the coaxial contra-rotating propeller lift system in eVTOL vehicles.
Mathematics, 12(7).
http://dx.doi.org/10.3390/math12071056