Comprehensive Research on the Effects of Different Launch Conditions on Pump-jet Propulsor Performance

Document Type : Regular Article

Authors

National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu, 212013, China

10.47176/jafm.18.4.2937

Abstract

This paper compares the cavitation of a pump-jet propulsor under different launch conditions and discusses the effects of cavitation on the performance and noise of the pump-jet propulsor rotor blade. At the same time, the load and deformation of the rotor blade under the conditions of cavitation are studied via the one-way fluid-structure interaction (FSI) approach. The results show that the cavitation of the pump-jet propulsor decreases with increasing launch depth and speed. The performance decreases with increasing launch speed at large depths, whereas the performance improves with increasing launch speed at small depths due to the improvement of the cavitation on the rotor blades. Increasing launch speed and depth increase the noise caused by the rotor of the pump-jet propulsor, and the increase in flow rate caused by the improvement of cavitation also increases the noise level. Moreover, increasing launch depth increases the overall load of the blade and produces a larger deformation, while the speed affects the distribution of the load on the blade. In addition, with the improvement of cavitation caused by increasing launch speed, the deformation of the blade decreases.

Keywords

Main Subjects


Al-Obaidi, A. R. (2018). Experimental and numerical investigations on the cavitation phenomenon in a centrifugal pump [Doctoral dissertation, University of Huddersfield].
Al-Obaidi, A. R. (2019). Investigation of effect of pump rotational speed on performance and detection of cavitation within a centrifugal pump using vibration analysis. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01910
Al-Obaidi, A. R. (2023). Experimental diagnostic of cavitation flow in the centrifugal pump under various impeller speeds based on acoustic analysis method. Archives of Acoustics, 48(2), 159-170. https://doi.org/10.24425/aoa.2023.145234
Al-Obaidi, A. R. (2024a). Effect of different guide vane configurations on flow field investigation and performances of an axial pump based on CFD analysis and vibration investigation. Experimental Techniques, 48(1), 69-88. https://doi.org/10.1007/s40799-023-00641-5
Al-Obaidi, A. R. (2024b). Evaluation and investigation of hydraulic performance characteristics in an axial pump based on CFD and acoustic analysis. Processes, 12(1), 129. https://doi.org/10.3390/pr12010129
Al-Obaidi, A. R., & Alhamid, J. (2023). Investigation of the main flow characteristics mechanism and flow dynamics within an axial flow pump based on different transient load conditions. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 47(4), 1397-1415. https://doi.org/10.1007/s40997-022-00586-x
Al-Obaidi, A. R., & Alhamid, J. (2024). Analysis of unsteady internal flow characteristics in axial pump with varying number of blades using computational modelling and vibration techniques. Flow Measurement and Instrumentation, 99, 102654. https://doi.org/10.1016/j.flowmeasinst.2024.102654
Al-Obaidi, A. R., Alhamid, J., & Khalaf, H. (2024). Unsteady behaviour and plane blade angle configurations' effects on pressure fluctuations and internal flow analysis in axial flow pumps. Alexandria Engineering Journal, 99, 83-107. https://doi.org/10.1016/j.aej.2024.04.048
Al-Obaidi, A. R., Khalaf, H., & Alhamid, J. (2023a, June). Investigation of the influence of varying operation configurations on flow behaviors characteristics and hydraulic axial-flow pump performance. Proceedings of the 4th International Conference on Science Education in The Industrial Revolution 4.0, ICONSEIR 2022, November 24th, 2022, Medan, Indonesia. http://dx.doi.org/10.4108/eai.24-11-2022.2332719
Al-Obaidi, A. R., Khalaf, H., & Alhamid, J. (2023b, June). Investigation on the characteristics of internal flow within three-dimensional axial pump based on different flow conditions. Proceedings of the 4th International Conference on Science Education in The Industrial Revolution 4.0, ICONSEIR 2022, November 24th, 2022, Medan, Indonesia. http://dx.doi.org/10.4108/eai.24-11-2022.2332720
An, X., Wang, P., Song, B., & Lessard, L. (2020). Bi-directional fluid-structure interaction for prediction of tip clearance influence on a composite ducted propeller. Ocean Engineering, 208, 107390.  https://doi.org/10.1016/j.oceaneng.2020.107390
An, X., Wang, P., Ye, M., He, R., Li, C., & Lessard, L. (2023). Tip clearance influence on hydrodynamic performance and pressure fluctuation of a composite ducted propeller using a two-way FSI method. Ocean Engineering, 282, 114698. https://doi.org/10.1016/j.oceaneng.2023.114698
Cochrane, J. D. (1958). The frequency distribution of water characteristics in the Pacific Ocean. Deep Sea Research, 5(2-4), 111-127. https://doi.org/10.1016/0146-6313(58)90002-9
Dowell, E. H., & Hall, K. C. (2001). Modeling of fluid-structure interaction. Annual Review of Fluid Mechanics, 33(1), 445-490. https://doi.org/10.1146/annurev.fluid.33.1.445
Emery, W. J., & Dewar, J. S. (1982). Mean temperature-salinity, salinity-depth and temperature-depth curves for the North Atlantic and the North Pacific. Progress in Oceanography, 11(3), 219-305. https://doi.org/10.1016/0079-6611(82)90015-5
Ffowcs Williams, J. E., & Hawkings, D. L. (1969). Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 264(1151), 321-342. https://doi.org/10.1098/rsta.1969.0031
Gan, G., Shi, W., Yi, J., Fu, Q., Zhu, R., & Duan, Y. (2023). The transient characteristics of the cavitation evolution of the shroud of high-speed pump-jet propulsor propellers under different operating conditions. Water, 15(17), 3073. https://doi.org/10.3390/w15173073
Goossens, M., & Goossens, M. (2003). Fluid equations for mass, momentum and energy. An Introduction to Plasma Astrophysics and Magnetohydrodynamics, 59-88. https://doi.org/10.1007/978-94-007-1076-4_3
Gritskevich, M. S., Garbaruk, A. V., Schütze, J., & Menter, F. R. (2012). Development of DDES and IDDES formulations for the k-ω shear stress transport model. Flow, Turbulence and Combustion, 88, 431-449. https://doi.org/10.1007/s10494-011-9378-4
Guo, Z., Xia, W., & Qian, Z. (2022). Study on noise of an axial flow waterjet pump with wavy leading edge. Ocean Engineering, 261, 112117. https://doi.org/10.1016/j.oceaneng.2022.112117
Huang, J., (2018). A simple accurate formula for calculating saturation vapor pressure of water and ice. Journal of Applied Meteorology and Climatology, 57(6), 1265-1272. https://doi.org/10.1175/JAMC-D-17-0334.1
Huang, Q., Li, H., Pan, G., & Dong, X. (2021). Effects of duct parameter on pump-jet propulsor propulsor unsteady hydrodynamic performance. Ocean Engineering, 221, 108509. https://doi.org/10.1016/j.oceaneng.2020.108509
Huang, Q., Qin, D., & Pan, G. (2022). Numerical simulation of the wake dynamics of the pumpjet propulsor in oblique inflow. Physics of Fluids, 34(6). https://doi.org/10.1063/5.0091408
Huang, X., Shi, S., Su, Z., Tang, W., & Hua, H. (2022). Reducing underwater radiated noise of a SUBOFF model propelled by a pump-jet propulsor without tip clearance: Numerical simulation. Ocean Engineering, 243, 110277. https://doi.org/10.1016/j.oceaneng.2021.110277
Korson, L., Drost-Hansen, W., & Millero, F. J. (1969). Viscosity of water at various temperatures. The Journal of Physical Chemistry, 73(1), 34-39. https://doi.org/10.1021/j100721a006
Krappel, T., Kuhlmann, H., Kirschner, O., Ruprecht, A., & Riedelbauch, S. (2015). Validation of an IDDES-type turbulence model and application to a Francis pump turbine flow simulation in comparison with experimental results. International Journal of Heat and Fluid Flow, 55, 167-179. https://doi.org/10.1016/j.ijheatfluidflow.2015.07.019
Li, H., Huang, Q., & Pan, G. (2023). Numerical radiated noise prediction of a pre-swirl stator pump-jet propulsor propulsor. Journal of Marine Science and Application, 22(2), 344-358. https://doi.org/10.1007/s11804-023-00340-y
Li, H., Pan, G., Huang, Q., & Shi, Y. (2020). Numerical prediction of the pumpjet propulsor tip clearance vortex cavitation in uniform flow. Journal of Shanghai Jiaotong University (Science), 25, 352-364. https://doi.org/10.1007/s12204-019-2138-7
Lu, L., Pan, G., Wei, J., & Pan, Y. (2016). Numerical simulation of tip clearance impact on a pumpjet propulsor. International Journal of Naval Architecture and Ocean Engineering, 8(3), 219-227. https://doi.org/10.1016/j.ijnaoe.2016.02.003
Lu, L., Wang, C., & Qin, D. (2020). Numerical investigations of flow characteristics of a pumpjet propulsor in oblique inflow. Applied Ocean Research, 103, 102343. https://doi.org/10.1016/j.apor.2020.102343
McCormick, B. W., & Elsenhuth, J. J. (1963). Design and performance of propellers and pumpjets for underwater propulsion. AIAA Journal, 1(10), 2348-2354. https://doi.org/10.2514/3.2065
Qin, D., Huang, Q., Pan, G., Han, P., Luo, Y., & Dong, X. (2021a). Numerical simulation of vortex instabilities in the wake of a preswirl pumpjet propulsor. Physics of Fluids, 33(5). https://doi.org/10.1063/5.0039935
Qin, D., Huang, Q., Shi, Y., Pan, G., Shi, Y., & Dong, X. (2021b). Comparison of hydrodynamic performance and wake vortices of two typical types of pumpjet propulsor. Ocean Engineering, 224, 108700. https://doi.org/10.1016/j.oceaneng.2021.108700
Qiu, C., Huang, Q., Pan, G., Shi, Y., & Dong, X. (2020). Numerical simulation of hydrodynamic and cavitation performance of pumpjet propulsor with different tip clearances in oblique flow. Ocean Engineering, 209, 107285. https://doi.org/10.1016/j.oceaneng.2020.107285
Qiu, C., Pan, G., Huang, Q., & Shi, Y. (2020). Numerical analysis of unsteady hydrodynamic performance of pump-jet propulsor propulsor in oblique flow. International Journal of Naval Architecture and Ocean Engineering, 12, 102-115. https://doi.org/10.1016/j.ijnaoe.2019.10.001
Ren, Y., Zhu, Z., Wu, D., Li, X., & Jiang, L. (2019). Investigation of flow separation in a centrifugal pump impeller based on improved delayed detached eddy simulation method. Advances in Mechanical Engineering, 11(12), 1687814019897832. https://doi.org/10.1177/1687814019897832
Shi, S., Huang, X., Rao, Z., Su, Z., & Hua, H. (2022). Numerical analysis on flow noise and structure-borne noise of fully appended SUBOFF propelled by a pump-jet propulsor. Engineering Analysis with Boundary Elements, 138, 140-158. https://doi.org/10.1016/j.enganabound.2022.02.012
Sun, Y., Peng, H., Liu, W., Guo, J., & Guo, Y. (2022). Comparison of the hydrodynamic performance of front and rear-stator pump-jet propulsor propulsors in an oblique wake under the cavitation condition. Physics of Fluids, 34(3). https://doi.org/10.1063/5.0082769
Xiong, Z., Rui, W., Lu, L., Zhang, G. and Huang, X. (2022). Experimental investigation of broadband thrust and loading noise from pumpjet due to turbulence ingestion. Ocean Engineering, 255, 111408. https://doi.org/10.1016/j.oceaneng.2022.111408
Xu, Z., & Lai, H. (2023). Comparison of cavitation in two axial-flow water jet propulsion pumps. Processes, 11(7), 2137. https://doi.org/10.3390/pr11072137
Yang, C., Sun, C., Wang, C., Yao, H. D., Guo, C., & Yue, Q. (2024). Serration of the duct trailing edge to affect the hydrodynamics and noise generation for a pump-jet propulsor propulsor. Physics of Fluids, 36(1). https://doi.org/10.1063/5.0180347
Yaws, C. L., Lin, X., & Bu, L. (1994). Calculate viscosities for 355 liquids. Chemical Engineering, 101(4), 119. Retrieved from https://www.proquest.com/trade-journals/calculate-viscosities-355-liquids/docview/194412912/se-2
Ye, J. M., Sun, D. P., Zou, X. Y., Wu, Y. R., & Xi, P. (2022). Tip flow control performance and mechanism of axial slots in a pumpjet propulsor. Ocean Engineering, 266, 112950. https://doi.org/10.1016/j.oceaneng.2022.112950
Yuan, J., Chen, Y., Wang, L., Fu, Y., Zhou, Y., Xu, J., & Lu, R. (2020). Dynamic analysis of cavitation tip vortex of pump-jet propulsor propeller based on DES. Applied Sciences, 10(17), 5998. https://doi.org/10.3390/app10175998
Zhao, X., Shen, X., Geng, L., Zhang, D., & van Esch, B. B. (2022). Effects of cavitation on the hydrodynamic loading and wake vortex evolution of a pre-swirl pump-jet propulsor propulsor. Ocean Engineering, 266, 113069. https://doi.org/10.1016/j.oceaneng.2022.113069
Zwart, P. J., Gerber, A. G., & Belamri, T. (2004). A two-phase flow model for predicting cavitation dynamics. Fifth international conference on multiphase flow (Vol. 152). Japan: Yokohama.