Altman, A., & Allemand, G. (2016, January 4-8).
Post-stall performance improvement through bio-inspired passive covert feathers. 54th AIAA Aerospace Sciences Meeting, California, USA.
https://doi.org/10.2514/6.2016-2042
Anderson, J. D. (2011). Fundamentals of Aerodynamics. 5th Edition, McGraw–Hill, New York.
Arivoli, D., Singh, I., & Suriyanarayanan, P. (2020). Rudimentary emulation of covert feathers on low-ar wings for post-stall lift enhancement.
AIAA Journal,
58(2), 501–516.
https://doi.org/10.2514/1.J058562
Baljit, S. S., Saad, M. R., Nasib, A. Z., Sani, A., Rahman, M. R. A., & Idris, A. C. (2017). Suction and blowing flow control on airfoil for drag reduction in subsonic flow.
Journal of Physics: Conference Series,
914(1).
https://doi.org/10.1088/1742-6596/914/1/012009
Bechert, D. W., Bruse, M., Hage, W., & Meyer, R. (1997, June 29- July 02).
Biological surfaces and their technological application - Laboratory and flight experiments on drag reduction and separation control. 28th AIAA Fluid Dynamics Conference, Snowmass Village, CO, U.S.A.
https://doi.org/10.2514/6.1997-1960
Bramesfeld, G., & Maughmer, M. D. (2002). Experimental investigation of self-actuating, upper-surface, high-lift-enhancing effectors.
Journal of Aircraft,
39(1), 120–124.
https://doi.org/10.2514/2.2905
Combes, S. A., & Daniel, T. L. (2003). Flexural stiffness in insect wings I. Scaling and the influence of wing venation.
Journal of Experimental Biology,
206(17), 2979–2987.
https://doi.org/10.1242/jeb.00523
Cravero, C. (2017). Aerodynamic performance prediction of a profile in ground effect with and without a gurney flap.
Journal of Fluids Engineering, Transactions of the ASME,
139(3), 1–15.
https://doi.org/10.1115/1.4035137
Gabriel, E. T., & Mueller, T. J. (2004). Low-aspect-ratio wing aerodynamics at low Reynolds number.
AIAA Journal, 42(5), 865-873.
https://doi.org/10.2514/1.439
Gerakopulos, R., Boutilier, M. S. H., & Yarusevych, S. (2010, June 28 - July 01).
Aerodynamic characterization of a NACA 0018 airfoil at low Reynolds numbers. 40th AIAA Fluid Dynamics Conference, Chicago, Illinois.
https://doi.org/10.2514/6.2010-4629
Hao, L., Gao, Y., & Wei, B. (2022). Experimental investigation of flow separation control over airfoil by upper surface flap with a gap.
International Journal of Aeronautical and Space Sciences,
23(5), 859–869.
https://doi.org/10.1007/s42405-022-00488-x
Jeong, H., Lee, S., & Kwon, S. D. (2018). Blockage corrections for wind tunnel tests conducted on a Darrieus wind turbine.
Journal of Wind Engineering and Industrial Aerodynamics,
179, 229–239.
https://doi.org/10.1016/j.jweia.2018.06.002
Karasu, I., Özden, M., & Genç, M. S. (2018). Performance assessment of transition models for three-dimensional flow over NACA4412 wings at low Reynolds numbers.
Journal of Fluids Engineering, Transactions of the ASME,
140(12), 1–15.
https://doi.org/10.1115/1.4040228
Kernstine, K. H., Moore, C. J., Cutler, A., & Mittal, R. (2008,
January 1-9).
Initial characterization of self-activated movable flaps, “Pop-up feathers.” 46th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, Nevada.
https://doi.org/10.2514/6.2008-369
Kim, S. H., Hong, W., & Kim, C. (2007). Separation control mechanism of airfoil using synthetic jet.
Journal of Mechanical Science and Technology,
21(9), 1367–1375.
https://doi.org/10.1007/BF03177422
Liu, T., Montefort, J., Liou, W., & Pantula, S. (2010). Effects of flexible fin on low-frequency oscillation in post-stall flows.
AIAA Journal,
48(6), 1235–1247.
https://doi.org/10.2514/1.J050205
McMasters, J. H., & Henderson, M. L. (1979). Low speed single-element airfoil synthesis. Technical Soaring, 6(2), 1–21.
Meyer, R., Hage, W., Bechert, D. W., Schatz, M., Knacke, T., & Thiele, F. (2007). Separation control by self-activated movable flaps.
AIAA Journal,
45(1), 191–199.
https://doi.org/10.2514/1.23507
Mizoguchi, M., & Itoh, H. (2013). Effect of aspect ratio on aerodynamic characteristics at low Reynolds numbers.
AIAA Journal,
51(7), 1631–1639.
https://doi.org/10.2514/1.J051915
Mueller, T. J. (1999). Aerodynamic measurements at low Reynolds numbers for fixed wing micro-air vehicles. RTO AVT/VKI Special Course on Development and Operation of UAVs for Military and Civil Applications, University of Notre Dame.
Mueller, T. J., Kellogg, J. C., Ifju, P. G., & Shkarayev, S. V. (2007).
Introduction to the Design of Fixed-Wing Micro Air Vehicles: Including Three Case Studies. American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/4.862106
Nelson, R. C. (1998). Flight stability and automatic control. 2nd Edition, Mc Graw Hill, New York.
Okamoto, M., & Azuma, A. (2011). Aerodynamic characteristics at low Reynolds numbers for wings of various planforms.
AIAA Journal,
49(6), 1135–1150.
https://doi.org/10.2514/1.J050071
Pelletier, A., & Mueller, T. J. (2000). Low Reynolds number aerodynamics of low-aspect-ratio, thin/flat/cambered-plate wings.
Jornal of Aircraft,
37(5), 825–832.
https://doi.org/10.2514/2.2676
Rizzetta, D. P., & Visbal, M. R. (2008). Plasma-based flow-control strategies for transitional highly loaded low-pressure turbines.
Journal of Fluids Engineering, Transactions of the ASME,
130(4), 0411041–04110412.
https://doi.org/10.1115/1.2903816
Rizzetta, D. P., & Visbal, M. R. (2012). Plasma control for a maneuvering low-aspect-ratio wing at low reynolds number.
Journal of Fluids Engineering, Transactions of the ASME,
134(12), 1–19.
https://doi.org/10.1115/1.4007947
Schatz, M., Knacke, T., Thiele, F., Meyer, R., Hage, W., & Bechert, D. (2004, January 5-8).
Separation control by self-activated movable flaps. 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada.
https://doi.org/10.2514/6.2004-1243
Schlüter, J. U. (2010). Lift enhancement at low Reynolds numbers using self-activated movable flaps.
Journal of Aircraft,
47(1), 348–351.
https://doi.org/10.2514/1.46425
Selig, M. S., Lyon, C. A., Giguere, P., Ninham, C. P., & Guglielmo, J. J. (1996). Summary of Low-Speed Airfoil Data, Vol 2. SoarTech Publications, Virginia Beach.
Verma, A., & Kulkarni, V. (2021, November 1-5).
Effect of self-actuating flap on the aerodynamic performance of flat plate wing at low Reynolds number. ASME International Mechanical Engineering Congress and Exposition.
https://doi.org/10.1115/IMECE2021-70495
Wang, C. H. J., & Schlüter, J. (2012). Stall control with feathers: Self-activated flaps on finite wings at low Reynolds numbers.
Comptes Rendus - Mecanique,
340(1–2), 57–66.
https://doi.org/10.1016/j.crme.2011.11.001
Winslow, J., Otsuka, H., Govindarajan, B., & Chopra, I. (2018). Basic understanding of airfoil characteristics at low Reynolds numbers (10
4–10
5).
Journal of Aircraft,
55(3), 1050–1061.
https://doi.org/10.2514/1.C034415