Experimental Study on Separated-flow Transition on a High-lift Blade

Document Type : Regular Article

Authors

1 School of Energy and Power Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China

2 Commercial Aircraft Corporation of China Ltd, Shanghai, 2001126, China

10.47176/jafm.18.4.2963

Abstract

The increasing loading level for high-lift blades in low-pressure turbines leads to a laminar separation bubble (LSB) formed on the surface, resulting in a greater profile loss. To obtain a detailed understanding of the flow physics, experiments were conducted at various Reynolds numbers (Re) using complementary hot-wire and hot-film anemometers. Two instability regions are confirmed inside/outside the LSB. The external region is due to the inviscid Kelvin–Helmholtz (K–H) instability, while the internal one originates from the reversed- flow even at a low reversal level. The Strouhal number associated with K–H instability remains constant as Re changes. Furthermore, the modal instability primarily in the form of the K–H mechanism and the non-modal instability due to the streamwise streaks induced by the freestream turbulence (FST) are found to coexist. The non-modal instability contains mainly low-frequency fluctuating energy, which impacts the disturbance energy spectrum within the separated shear layer. This reveals that the inflectional velocity profiles amplify the fluctuating energy within both the K–H frequency band and the low-frequency range. The origin of the latter can be traced upstream of the separation. However, inflectional instability remains immanently linked to the inviscid K–H instability, which cannot be bypassed as Re increases even with a thinner LSB.

Keywords

Main Subjects


Alam, M., & Sandham, N. D. (2000). Direct numerical simulation of “short” laminar separation bubbles with turbulent reattachment. Journal of Fluid Mechanics, 410, 1–28. https://doi.org/10.1017/S0022112099008976
Balzer, W., & Fasel, H. F. (2016). Numerical investigation of the role of free-stream turbulence in boundary-layer separation. Journal of Fluid Mechanics, 801, 289–321. https://doi.org/10.1017/jfm.2016.424
Bolinches-Gisbert, M., Robles, D. C., Corral, R., & Gisbert, F. (2020). Prediction of reynolds number effects on low-pressure turbines using a high-order ILES method. Journal of Turbomachinery, 142(3), 031002. https://doi.org/10.1115/1.4045776
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, &OIML. (2008). Evaluation of measurement data—Guide to the expression of uncertainty in measurement. Joint Committee for Guides in Metrology, JCGM 100:2008. https://doi.org/10.59161/JCGM100-2008E
Brinkerhoff, J. R., & Yaras, M. I. (2011). Interaction of viscous and inviscid instability modes in separation–bubble transition. Physics of Fluids, 23(12), 124102. https://doi.org/10.1063/1.3666844
Coull, J. D., & Hodson, H. P. (2011). Unsteady boundary-layer transition in low-pressure turbines. Journal of Fluid Mechanics, 681, 370–410. https://doi.org/10.1017/jfm.2011.204
Davies, M. R. D., & Duffy, J. T. (1995, June 5-8). A semi-empirical theory for surface mounted aerodynamic wall shear stress gauges. ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition, Houston, Texas, USA. https://doi.org/10.1115/95-GT-193
Denton, J. D. (1993). The 1993 IGTI scholar lecture: loss mechanisms in turbomachines. Journal of Turbomachinery, 115(4), 621–656. https://doi.org/10.1115/1.2929299
Diwan, S. S., & Ramesh, O. N. (2009). On the origin of the inflectional instability of a laminar separation bubble. Journal of Fluid Mechanics, 629, 263–298. https://doi.org/10.1017/S002211200900634X
Dovgal, A. V., Kozlov, V. V., & Michalke, A. (1994). Laminar boundary layer separation: Instability and associated phenomena. Progress in Aerospace Sciences, 30(1), 61–94. https://doi.org/10.1016/0376-0421(94)90003-5
Satta, F., Simoni, D., Ubaldi, M., Zunino, P., & Bertini, F. (2014). Loading distribution effects on separated flow transition of ultra-high-lift turbine blades. Journal of Propulsion and Power, 30(3), 845–856. https://doi.org/10.2514/1.B34968
Funazaki, K., Yamada, K., Tanaka, N., & Chiba, Y. (2009, June 8-12). Detailed studies on separated boundary layers over low-pressure turbine airfoils under several high lift conditions: Effect of freestream turbulence. ASME Turbo Expo 2009: Power for Land, Sea, and Air, Orlando, Florida, USA. https://doi.org/10.1115/GT2009-59813
Gaster, M. (1967). The structure and behaviour of laminar separation bubbles. Aeronautical Research Council Reports and Memoranda, No. 5395. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f1579f637cc7eefb938a4ffd6613b4d46298e086
Hain, R., Kähler, C. J., & Radespiel, R. (2009). Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils. Journal of Fluid Mechanics, 630, 129–153. https://doi.org/10.1017/S0022112009006661
Ho, C. M., & Huerre, P. (1984). Perturbed Free Shear Layers. Annual Review of Fluid Mechanics, 16(1), 365–422. https://doi.org/10.1146/annurev.fl.16.010184.002053
Hodson, H. P. (1985). Measurements of wake-generated unsteadiness in the rotor passages of axial flow turbines. Journal of Engineering for Gas Turbines and Power, 107(2), 467–475. https://doi.org/10.1115/1.3239751
Hodson, H., & Howell, R. (2005). The role of transition in high-lift low-pressure turbines for aeroengines. Progress in Aerospace Sciences, 41, 419–454. https://doi.org/10.1016/j.paerosci.2005.08.001
Hosseinverdi, S., & Fasel, H. F. (2019). Numerical investigation of laminar–turbulent transition in laminar separation bubbles: The effect of free-stream turbulence. Journal of Fluid Mechanics, 858, 714–759. https://doi.org/10.1017/jfm.2018.809
Howell, R. J., Hodson, H. P., Schulte, V., Stieger, R. D., Schiffer, H. P., Haselbach, F., & Harvey, N. W. (2002). Boundary layer development in the BR710 and BR715 LP turbines—the implementation of high-lift and ultra-high-lift concepts. Journal of Turbomachinery, 124(3), 385–392. https://doi.org/10.1115/1.1457455
Howell, R. J., Ramesh, O. N., Hodson, H. P., Harvey, N. W., & Schulte, V. (2000). high lift and aft-loaded profiles for low-pressure turbines. Journal of Turbomachinery, 123(2), 181–188. https://doi.org/10.1115/1.1350409
Ikeya, Y., Örlü, R., Fukagata, K., & Alfredsson, P. H. (2017). Towards a theoretical model of heat transfer for hot-wire anemometry close to solid walls. International Journal of Heat and Fluid Flow, 68, 248–256. https://doi.org/10.1016/j.ijheatfluidflow.2017.09.002
Istvan, M. S., & Yarusevych, S. (2018). Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil. Experiments in Fluids, 59(3), 52. https://doi.org/10.1007/s00348-018-2511-6
Lin, J. M., & Pauley, L. L. (1996). Low-Reynolds-number separation on an airfoil. AIAA Journal, 34(8), 1570–1577. https://doi.org/10.2514/3.13273
Jacobs, R. G., & Durbin, P. A. (2001). Simulations of bypass transition. Journal of Fluid Mechanics, 428, 185–212. https://doi.org/10.1017/S0022112000002469
Jaroslawski, T., Forte, M., Vermeersch, O., Moschetta, J.-M., & Gowree, E. R. (2023). Disturbance growth in a laminar separation bubble subjected to free-stream turbulence. Journal of Fluid Mechanics, 956, A33. https://doi.org/10.1017/jfm.2023.23
Lang, M., Rist, U., & Wagner, S. (2004). Investigations on controlled transition development in a laminar separation bubble by means of LDA and PIV. Experiments in Fluids, 36(1), 43–52. https://doi.org/10.1007/s00348-003-0625-x
Li, H., & Yang, Z. (2016, June). Numerical study of separated boundary layer transition under pressure gradient. 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malaga, Spain. https://repository.up.ac.za/handle/2263/61901
Liang, Y., Zou, Z. P., Liu, H. X., & Zhang, W. H. (2015). Experimental investigation on the effects of wake passing frequency on boundary layer transition in high-lift low-pressure turbines. Experiments in Fluids, 56(4), 81. https://doi.org/10.1007/s00348-015-1947-1
Mahallati, A., McAuliffe, B. R., Sjolander, S. A., & Praisner, T. J. (2012). Aerodynamics of a low-pressure turbine airfoil at low reynolds numbers—part i: steady flow measurements. Journal of Turbomachinery, 135(1). https://doi.org/10.1115/1.4006319
Marxen, O. (2020, January 6-10). Viscous-inviscid interaction in laminar separation bubbles (invited). AIAA Scitech 2020 Forum, Orlando, FL. https://doi.org/10.2514/6.2020-1555
Marxen, O., Lang, M., Rist, U., & Wagner, S. (2003). A Combined experimental/numerical study of unsteady phenomena in a laminar separation bubble. Flow, Turbulence and Combustion, 71(1–4), 133–146. https://doi.org/10.1023/B:APPL.0000014928.69394.50
Mayle, R. E. (1991). The role of laminar-turbulent transition in gas turbine engines. Journal of Turbomachinery, 113(4), 509–536. https://doi.org/10.1115/1.2929110
Mcauliffe, B. (2007). Transition in separation bubbles: Physical mechanisms and passive control techniques. Carleton University. https://doi.org/10.22215/etd/2007-06692
McAuliffe, B. R., & Yaras, M. I. (2005, June 6-9). Separation-bubble-transition measurements on a Low-Re airfoil using particle image velocimetry. ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, Nevada, USA. https://doi.org/10.1115/GT2005-68663
McAuliffe, B. R., & Yaras, M. I. (2008). Numerical study of instability mechanisms leading to transition in separation bubbles. Journal of Turbomachinery, 130(2). https://doi.org/10.1115/1.2750680
McAuliffe, B. R., & Yaras, M. I. (2010). Transition mechanisms in separation bubbles under low- and elevated-freestream turbulence. Journal of Turbomachinery, 132(1), 011004. https://doi.org/10.1115/1.2812949
Ripley, M. D., & Pauley, L. L. (1993). The unsteady structure of two‐dimensional steady laminar separation. Physics of Fluids A: Fluid Dynamics, 5(12), 3099–3106. https://doi.org/10.1063/1.858719
Rist, U., & Maucher, U. (2002). Investigations of time-growing instabilities in laminar separation bubbles. European Journal of Mechanics - B/Fluids, 21(5), 495–509. https://doi.org/10.1016/S0997-7546(02)01205-0
Roberts, S. K., & Yaras, M. I. (2005). Large-eddy simulation of transition in a separation bubble. Journal of Fluids Engineering, 128(2), 232–238. https://doi.org/10.1115/1.2170123
Rodríguez, D., & Gennaro, E. M. (2019). Enhancement of disturbance wave amplification due to the intrinsic three-dimensionalisation of laminar separation bubbles. The Aeronautical Journal, 123(1268), 1492–1507. https://doi.org/10.1017/aer.2018.115
Rodríguez, D., Gennaro, E. M., & Juniper, M. P. (2013). The two classes of primary modal instability in laminar separation bubbles. Journal of Fluid Mechanics, 734, R4. https://doi.org/10.1017/jfm.2013.504
Rodríguez, D., Gennaro, E. M., & Souza, L. F. (2021). Self-excited primary and secondary instability of laminar separation bubbles. Journal of Fluid Mechanics, 906, A13. https://doi.org/10.1017/jfm.2020.767
Simoni, D., Ubaldi, M., Zunino, P., Lengani, D., & Bertini, F. (2012). An experimental investigation of the separated-flow transition under high-lift turbine blade pressure gradients. Flow, Turbulence and Combustion, 88(1–2), 45–62. https://doi.org/10.1007/s10494-011-9375-7
Singh, N. K. (2019). Instability and transition in a laminar separation bubble. Journal of Applied Fluid Mechanics, 12(5), 1511–1525. https://doi.org/10.29252/jafm.12.05.29607
Spalart, P. R., & Strelets, M. K. (2000). Mechanisms of transition and heat transfer in a separation bubble. Journal of Fluid Mechanics, 403, 329–349. https://doi.org/10.1017/S0022112099007077
Sun, S., Wu, X., Tan, T., Zuo, C., Pan, S., & Liu, F. (2020, September 21-25). Generation and development of klebanoff streaks in low-pressure turbine cascade under upstream wakes. ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, Virtual, Online. https://doi.org/10.1115/GT2020-15313
Talan, M., & Hourmouziadis, J. (2002). Characteristic regimes of transitional separation bubbles in unsteady flow. Flow, Turbulence and Combustion, 69(3), 207–227. https://doi.org/10.1023/A:1027355105017
Volino, R. J. (2002a). Separated flow transition under simulated low-pressure turbine airfoil conditions—Part 1: Mean flow and turbulence statistics. Journal of Turbomachinery, 124(4), 645–655. https://doi.org/10.1115/1.1506938
Volino, R. J. (2002b). Separated flow transition under simulated low-pressure turbine airfoil conditions—Part 2: Turbulence spectra. Journal of Turbomachinery, 124(4), 656–664. https://doi.org/10.1115/1.1506939
Volino, R. J., & Bohl, D. G. (2004, June 14-17). Separated flow transition mechanism and prediction with high and low freestream turbulence under low pressure turbine conditions. ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vienna, Austria. https://doi.org/10.1115/gt2004-53360
Walker, G. J. (1989). Transitional flow on axial turbomachine blading. AIAA Journal, 27(5), 595–602. https://doi.org/10.2514/3.10150
Watmuff, J. H. (1999). Evolution of a wave packet into vortex loops in a laminar separation bubble. Journal of Fluid Mechanics, 397, 119–169. https://doi.org/10.1017/S0022112099006138
Yang, S., Xu, B., Tian, F., & Wang, B. (2023). Aerodynamic performance of high-lift blades in low-pressure turbines with periodic upstream wakes. Journal of Mechanical Science and Technology, 37(5), 2425–2437. https://doi.org/10.1007/s12206-023-0419-4
Yang, Z. (2019). On bypass transition in separation bubbles: A review. Propulsion and Power Research, 8(1), 23–34. https://doi.org/10.1016/j.jppr.2018.12.004
Yang, Z., & Voke, P. R. (2001). Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature. Journal of Fluid Mechanics, 439, 305–333. https://doi.org/10.1017/S0022112001004633
Zaki, T. A., & Durbin, P. A. (2005). Mode Interaction and the Bypass Route to Transition. Journal of Fluid Mechanics, 531, 85–111. https://doi.org/10.1017/S0022112005003800
Zaki, T. A., & Durbin, P. A. (2006). Continuous mode transition and the effects of pressure gradient. Journal of Fluid Mechanics, 563, 357–388. https://doi.org/10.1017/S0022112006001340
Zhang, X., Mahallati, A., & Sjolander, S. (2002, July 7-10). Hot-film measurements of boundary layer transition, separation and reattachment on a low-pressure turbine airfoil at low reynolds numbers. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana. https://doi.org/10.2514/6.2002-3643
Zhao, Y., & Sandberg, R. D. (2020). Bypass transition in boundary layers subject to strong pressure gradient and curvature effects. Journal of Fluid Mechanics, 888, A4. https://doi.org/10.1017/jfm.2020.39