Alam, M., & Sandham, N. D. (2000). Direct numerical simulation of “short” laminar separation bubbles with turbulent reattachment.
Journal of Fluid Mechanics,
410, 1–28.
https://doi.org/10.1017/S0022112099008976
Balzer, W., & Fasel, H. F. (2016). Numerical investigation of the role of free-stream turbulence in boundary-layer separation.
Journal of Fluid Mechanics,
801, 289–321.
https://doi.org/10.1017/jfm.2016.424
Bolinches-Gisbert, M., Robles, D. C., Corral, R., & Gisbert, F. (2020). Prediction of reynolds number effects on low-pressure turbines using a high-order ILES method.
Journal of Turbomachinery,
142(3), 031002.
https://doi.org/10.1115/1.4045776
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, &OIML. (2008). Evaluation of measurement data—Guide to the expression of uncertainty in measurement. Joint Committee for Guides in Metrology, JCGM 100:2008.
https://doi.org/10.59161/JCGM100-2008E
Brinkerhoff, J. R., & Yaras, M. I. (2011). Interaction of viscous and inviscid instability modes in separation–bubble transition.
Physics of Fluids,
23(12), 124102.
https://doi.org/10.1063/1.3666844
Davies, M. R. D., & Duffy, J. T. (1995, June 5-8).
A semi-empirical theory for surface mounted aerodynamic wall shear stress gauges. ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition, Houston, Texas, USA.
https://doi.org/10.1115/95-GT-193
Satta, F., Simoni, D., Ubaldi, M., Zunino, P., & Bertini, F. (2014). Loading distribution effects on separated flow transition of ultra-high-lift turbine blades. Journal of Propulsion and Power, 30(3), 845–856. https://doi.org/10.2514/1.B34968
Funazaki, K., Yamada, K., Tanaka, N., & Chiba, Y. (2009, June 8-12).
Detailed studies on separated boundary layers over low-pressure turbine airfoils under several high lift conditions: Effect of freestream turbulence. ASME Turbo Expo 2009: Power for Land, Sea, and Air, Orlando, Florida, USA.
https://doi.org/10.1115/GT2009-59813
Hain, R., Kähler, C. J., & Radespiel, R. (2009). Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils.
Journal of Fluid Mechanics,
630, 129–153.
https://doi.org/10.1017/S0022112009006661
Hodson, H. P. (1985). Measurements of wake-generated unsteadiness in the rotor passages of axial flow turbines.
Journal of Engineering for Gas Turbines and Power,
107(2), 467–475.
https://doi.org/10.1115/1.3239751
Hosseinverdi, S., & Fasel, H. F. (2019). Numerical investigation of laminar–turbulent transition in laminar separation bubbles: The effect of free-stream turbulence.
Journal of Fluid Mechanics,
858, 714–759.
https://doi.org/10.1017/jfm.2018.809
Howell, R. J., Hodson, H. P., Schulte, V., Stieger, R. D., Schiffer, H. P., Haselbach, F., & Harvey, N. W. (2002). Boundary layer development in the BR710 and BR715 LP turbines—the implementation of high-lift and ultra-high-lift concepts.
Journal of Turbomachinery,
124(3), 385–392.
https://doi.org/10.1115/1.1457455
Howell, R. J., Ramesh, O. N., Hodson, H. P., Harvey, N. W., & Schulte, V. (2000). high lift and aft-loaded profiles for low-pressure turbines.
Journal of Turbomachinery,
123(2), 181–188.
https://doi.org/10.1115/1.1350409
Ikeya, Y., Örlü, R., Fukagata, K., & Alfredsson, P. H. (2017). Towards a theoretical model of heat transfer for hot-wire anemometry close to solid walls.
International Journal of Heat and Fluid Flow,
68, 248–256.
https://doi.org/10.1016/j.ijheatfluidflow.2017.09.002
Istvan, M. S., & Yarusevych, S. (2018). Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil.
Experiments in Fluids,
59(3), 52.
https://doi.org/10.1007/s00348-018-2511-6
Jaroslawski, T., Forte, M., Vermeersch, O., Moschetta, J.-M., & Gowree, E. R. (2023). Disturbance growth in a laminar separation bubble subjected to free-stream turbulence.
Journal of Fluid Mechanics,
956, A33.
https://doi.org/10.1017/jfm.2023.23
Lang, M., Rist, U., & Wagner, S. (2004). Investigations on controlled transition development in a laminar separation bubble by means of LDA and PIV.
Experiments in Fluids,
36(1), 43–52.
https://doi.org/10.1007/s00348-003-0625-x
Li, H., & Yang, Z. (2016, June).
Numerical study of separated boundary layer transition under pressure gradient. 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malaga, Spain.
https://repository.up.ac.za/handle/2263/61901
Liang, Y., Zou, Z. P., Liu, H. X., & Zhang, W. H. (2015). Experimental investigation on the effects of wake passing frequency on boundary layer transition in high-lift low-pressure turbines.
Experiments in Fluids,
56(4), 81.
https://doi.org/10.1007/s00348-015-1947-1
Mahallati, A., McAuliffe, B. R., Sjolander, S. A., & Praisner, T. J. (2012). Aerodynamics of a low-pressure turbine airfoil at low reynolds numbers—part i: steady flow measurements.
Journal of Turbomachinery,
135(1).
https://doi.org/10.1115/1.4006319
Marxen, O. (2020, January 6-10).
Viscous-inviscid interaction in laminar separation bubbles (invited).
AIAA Scitech 2020 Forum, Orlando, FL.
https://doi.org/10.2514/6.2020-1555
Marxen, O., Lang, M., Rist, U., & Wagner, S. (2003). A Combined experimental/numerical study of unsteady phenomena in a laminar separation bubble.
Flow, Turbulence and Combustion,
71(1–4), 133–146.
https://doi.org/10.1023/B:APPL.0000014928.69394.50
McAuliffe, B. R., & Yaras, M. I. (2005, June 6-9).
Separation-bubble-transition measurements on a Low-Re airfoil using particle image velocimetry. ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, Nevada, USA.
https://doi.org/10.1115/GT2005-68663
McAuliffe, B. R., & Yaras, M. I. (2008). Numerical study of instability mechanisms leading to transition in separation bubbles.
Journal of Turbomachinery,
130(2).
https://doi.org/10.1115/1.2750680
McAuliffe, B. R., & Yaras, M. I. (2010). Transition mechanisms in separation bubbles under low- and elevated-freestream turbulence.
Journal of Turbomachinery,
132(1), 011004.
https://doi.org/10.1115/1.2812949
Ripley, M. D., & Pauley, L. L. (1993). The unsteady structure of two‐dimensional steady laminar separation.
Physics of Fluids A: Fluid Dynamics,
5(12), 3099–3106.
https://doi.org/10.1063/1.858719
Roberts, S. K., & Yaras, M. I. (2005). Large-eddy simulation of transition in a separation bubble. Journal of Fluids Engineering, 128(2), 232–238. https://doi.org/10.1115/1.2170123
Rodríguez, D., & Gennaro, E. M. (2019). Enhancement of disturbance wave amplification due to the intrinsic three-dimensionalisation of laminar separation bubbles.
The Aeronautical Journal,
123(1268), 1492–1507.
https://doi.org/10.1017/aer.2018.115
Rodríguez, D., Gennaro, E. M., & Juniper, M. P. (2013). The two classes of primary modal instability in laminar separation bubbles.
Journal of Fluid Mechanics,
734, R4.
https://doi.org/10.1017/jfm.2013.504
Rodríguez, D., Gennaro, E. M., & Souza, L. F. (2021). Self-excited primary and secondary instability of laminar separation bubbles.
Journal of Fluid Mechanics,
906, A13.
https://doi.org/10.1017/jfm.2020.767
Simoni, D., Ubaldi, M., Zunino, P., Lengani, D., & Bertini, F. (2012). An experimental investigation of the separated-flow transition under high-lift turbine blade pressure gradients.
Flow, Turbulence and Combustion,
88(1–2), 45–62.
https://doi.org/10.1007/s10494-011-9375-7
Sun, S., Wu, X., Tan, T., Zuo, C., Pan, S., & Liu, F. (2020, September 21-25).
Generation and development of klebanoff streaks in low-pressure turbine cascade under upstream wakes. ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, Virtual, Online.
https://doi.org/10.1115/GT2020-15313
Talan, M., & Hourmouziadis, J. (2002). Characteristic regimes of transitional separation bubbles in unsteady flow.
Flow, Turbulence and Combustion,
69(3), 207–227.
https://doi.org/10.1023/A:1027355105017
Volino, R. J. (2002a). Separated flow transition under simulated low-pressure turbine airfoil conditions—Part 1: Mean flow and turbulence statistics.
Journal of Turbomachinery,
124(4), 645–655.
https://doi.org/10.1115/1.1506938
Volino, R. J. (2002b). Separated flow transition under simulated low-pressure turbine airfoil conditions—Part 2: Turbulence spectra.
Journal of Turbomachinery,
124(4), 656–664.
https://doi.org/10.1115/1.1506939
Volino, R. J., & Bohl, D. G. (2004, June 14-17).
Separated flow transition mechanism and prediction with high and low freestream turbulence under low pressure turbine conditions. ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vienna, Austria.
https://doi.org/10.1115/gt2004-53360
Yang, S., Xu, B., Tian, F., & Wang, B. (2023). Aerodynamic performance of high-lift blades in low-pressure turbines with periodic upstream wakes.
Journal of Mechanical Science and Technology,
37(5), 2425–2437.
https://doi.org/10.1007/s12206-023-0419-4
Yang, Z., & Voke, P. R. (2001). Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature.
Journal of Fluid Mechanics,
439, 305–333.
https://doi.org/10.1017/S0022112001004633
Zhang, X., Mahallati, A., & Sjolander, S. (2002, July 7-10).
Hot-film measurements of boundary layer transition, separation and reattachment on a low-pressure turbine airfoil at low reynolds numbers. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana.
https://doi.org/10.2514/6.2002-3643
Zhao, Y., & Sandberg, R. D. (2020). Bypass transition in boundary layers subject to strong pressure gradient and curvature effects.
Journal of Fluid Mechanics,
888, A4.
https://doi.org/10.1017/jfm.2020.39