Investigation of the Flow Field Characteristics of Aortic Bileaflet Mechanical Heart Valves with Different Leaflet Shapes Using PIV

Document Type : Regular Article

Authors

1 Energy and Power Engineering College, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050, China

2 Key Laboratory of Advanced Pumps, Valves and Fluid Control System of the Ministry of Education, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050, China

3 Cardiovascular Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, China

10.47176/jafm.18.4.2947

Abstract

Non-physiological flow patterns generated by bileaflet mechanical aortic valves are closely associated with thromboembolism following valve replacement surgery. Investigating how different leaflet shapes affect the flow field characteristics of these valves can help optimize leaflet designs to improve hemodynamic performance and reduce postoperative complications. This study used clinical CT imaging data to create a realistic silicone model of the aortic root, setting up an extracorporeal pulsatile flow system to simulate cyclical blood flow. Particle image velocimetry was used to capture the periodic flow field downstream of bileaflet mechanical aortic valves with straight and curved leaflets, analyzing the impact of leaflet shape on velocity distribution, vortex dynamics, viscous shear stress (VSS), and Reynolds shear stress (RSS). Results indicate that the curved leaflets reduced the impact on the aortic sinus, mitigating endothelial cell damage caused by high velocity. The curved leaflet design also increased the effective flow area, preventing blood stagnation and reducing local concentrations of coagulation factors, thus lowering the risk of thrombus formation. The maximum VSS for the straight and curved leaflets were 1.93 N/m2 and 1.87 N/m2, respectively, while the RSS reached 152 N/m2 and 118 N/m2, respectively. Curved leaflets minimized turbulent shear stress on blood cells, reducing platelet activation and lowering the incidence of thromboembolism. Optimizing leaflet curvature offers a promising avenue for enhancing the hemodynamic performance of bileaflet mechanical aortic valves. Curved designs may also be more suitable for older patients or those with reduced cardiac ejection capacity, improving surgical outcomes and recovery.

Keywords

Main Subjects


Adawy, M. E., Heikal, M., Aziz, A. R., Munir, S., Siddiqui, M. I., & Mobility, E. (2018). Effect of boost pressure on the in-cylinder tumble- motion of GDI engine under steady-state conditions using Stereoscopic-PIV. Journal of Applied Fluid Mechanics, 11(3), 733-742. https://doi.org/10.18869/ACADPUB.JAFM.73.246.28506.
Akutsu, T., & Fukuda, T. (2005). Time-resolved particle image velocimetry and laser doppler anemometry study of the turbulent flow field of bileaflet mechanical mitral prostheses. Journal of Artificial Organs, 8(3), 171-183. https://doi.org/10.1007/s10047-005-0298-8.
Akutsu, T., & Matsumoto, A. (2010). Influence of three mechanical bileaflet prosthetic valve designs on the three-dimensional flow field inside a simulated aorta. Journal of Artificial Organs, (4), 207-217. https://doi.org/10.1007/s10047-010-0519-7.
Akutsu, T., & Saito, J. (2006). Dynamic particle image velocimetry flow analysis of the flow field immediately downstream of bileaflet mechanical mitral prostheses. Journal of Artificial Organs, 9(3), 165-178. https://doi.org/10.1007/s10047-006-0340-5.
Akutsu, T., Saito, J., Imai, R., Suzuki, T. X., & Cao, X. D. (2008). Dynamic particle image velocimetry study of the aortic flow field of contemporary mechanical bileaflet prostheses. Journal of Artificial Organs, 11(2), 75-90. https://doi.org/10.1007/s10047-008-0410-y.
Black, M. M., & Drury, P. J. (1994). Mechanical and other Problems of Artificial Valves. Current Topics in Pathology Ergebnisse der Pathologie, 86, 127-159. https://doi.org/10.1007/978-3-642-76846-0_4.
Chandran, K. B., Khalighi, B., & Chen, C. J. (1985). Experimental study of physiological pulsatile flow past valve prostheses in a model of human aorta-I. Caged ball valves. Journal of Biomechanics, 10(18), 763-765. https://doi.org/10.1016/0021-9290(85)90051-X.
Chew, Y. T., Low, H. T., Lee, C. N., & Kwa, S. S. (1993). Laser anemometry measurements of steady flow past aortic valve prostheses. Journal of Biomechanical Engineering, 115(3), 290-298. https://doi.org/10.1115/1.2895489.
Colantuoni, G., Heliums, J. D., Moake, J. L., & Alfrey, C. P. (1977). The response of human platelets to shear stress at short exposure times. ASAIO Journal, 23(1), 626-630. https://doi.org/10.1097/00002480-197700230-00169.
Dasi, L. P., Simon, H. A., Sucosky, P., Sucosky, P., & Yoganathan, A. (2009). Fluid mechanics of artificial heart valves. Clinical and Experimental Pharmacology & Physiology, 36(2), 225-237. https://doi.org/10.1111/j.1440-1681.2008.05099.x.
Fang, Y. J., Zhang, M., Sun, X. P., Zhang, J. F., & Qu, Y. F. (2021). Study on internal flow characteristics of non-newtonian fluids in mechanical stirred tank. Journal of Mechanical Engineering, 57(20), 244-253. https://doi.org/10.3901/jme.2021.20.244.
Fraser, K. H., Zhang, T., Taskin, M. E., Griffith, B. P., & Wu, Z. J. (2012). A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. Journal of Biomechanical Engineering, 134(8), 081002. https://doi.org/10.1115/1.4007092.
Garg, P., Markl, M., Sathananthan, J., Sellers, S. L., Meduri, C.,& Cavalcante, J. (2023). Restoration of flow in the aorta: a novel therapeutic target in aortic valve intervention. Nature Reviews Cardiology, 21(4), 264-273. https://doi.org/10.1038/s41569-023-00943-6.
Ge, L., Leo, H., Sotiropoulos, F., & Yoganathan, A. P. (2005). Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. Journal of Biomechanical Engineering, 127(5), 782-797. https://doi.org/10.1115/1.1993665.
Grigioni, M., Daniele, C., D’Avenio, G., & Barbaro, V. (2001). The influence of the leaflets’ curvature on the flow field in two bileaflet prosthetic heart valves. Journal of Biomechanics, 34(5), 613-621. https://doi.org/10.1016/S0021-9290(00)00240-2.
Gunning, P. S., Saikrishnan, N., McNamara, L. M., & Yoganathan, A. P. (2014). An in vitro evaluation of the impact of eccentric deployment on transcatheter aortic valve hemodynamics. Annals of Biomedical Engineering, 42(6), 1195-1206. https://doi.org/10.1007/s10439-014-1008-6.
Haghighi A. R., & Asl, M. S. (2015). Mathematical modeling of micropolar fluid flow through an overlapping arterial stenosis. International Journal of Biomathematics, 04(08), 1550056. https://doi.org/10.1142/S1793524515500564.
Haghighi, A. R., Aliashrafi, N., & Asl, M. S. (2020). An implicit approach to the micropolar fluid model of blood flow under the effect of body acceleration. Mathematical Sciences, 14(3), 269-277. https://doi.org/10.1007/s40096-020-00340-x.
Hatoum, H., Ahn, S., Lilly, S. M., Maureira, P., Crestanello, J. A., Thourani, V. H., & Dasi, L. P. (2022). Flow dynamics of surgical and transcatheter aortic valves: Past to present. JTCVS Open, 9, 43-56. https://doi.org/10.1016/j.xjon.2022.01.017.
Horstkotte, D., Haerten, K. J., Herzer, J. A., Seipel, L ., Bircks, W., & Loogen, F. (1981). Preliminary clinical and hemodynamic results after mitral valve replacement using St. Jude Medical prostheses in comparison with the Björk-Shiley valve. The Thoracic and Cardiovascular Surgeon, 29(2), 93-99. https://doi.org/10.1055/s-2007-1023451.
Kawahito, K., & Nosé, Y. (2008). Hemolysis in different centrifugal pumps. Artificial Organs, 21(4), 323-326. https://doi.org/10.1111/j.1525-1594.1997.tb00369.x.
Knoch, M., Reul, H., Kröger, R., & Rau, G. (1988). Model studies at mechanical aortic heart valve prostheses-Part I: Steady-state flow fields and pressure loss coefficients. Journal of Biomechanical Engineering, 110(4), 334-343. https://doi.org/10.1115/1.3108450.
Leo, H. L., He, Z., Ellis, J. T., & Yoganathan, A. P. (2002). Microflow fields in the hinge region of the CarboMedics bileaflet mechanical heart valve design. Journal of Thoracic and Cardiovascular Surgery, 124(3), 561-574. https://doi.org/10.1067/mtc.2002.125206.
Leverett, L. B., Hellums, J. D., Alfrey, C. P., & Lynch, E. C. (1972). Red blood cell damage by shear stress. Biophysical Journal, 12(3), 257-273. https://doi.org/10.1016/S0006-3495(72)86085-5.
Linde, T., Hamilton, K. F., Navalon, E. C., Schmitz-Rode, T., & Steinseifer, U. (2012). Aortic root compliance influences hemolysis in mechanical heart valve prostheses: an in-vitro study. The International Journal of Artificial Organs, 35(7), 495-502. https://doi.org/10.5301/ijao.5000108.
Liu, Z. M., Xue, H. B., Yang, G., Pang, Y., Fang, Y. C., Li, M. Q., Qi, Y. P., & Shi, Y. (2020). PIV experimental study on the hemodynamics of aortic valve under varied tilted angles. Chinese Journal of Theoretical and Applied Mechanics, 52(6), 1811-1821. https://doi.org/10.6052/0459-1879-20-229.
Liu, Z. M., Yang, G., Pang, Y., Zhong, X. X., Li, M. Q., Xue, H. B., Qi, Y. P., & Shi, Y. (2019). Experimental study on hemodynamics of aortic valve under varied cardiac output using PIV. Chinese Journal of Theoretical and Applied Mechanics, 51(6), 1918-1926. https://doi.org/10.6052/0459-1879-19-231.
Marquis-Gravel, G., Redfors, B., Leon, M. B., & Généreux, P. (2016). Medical treatment of aortic stenosis. Circulation, 134(22), 1766-1784. https://doi.org/10.1161/CIRCULATIONAHA.116.023997.
Pour, M. K., Nili-Ahmadabadi, M., Taherian, G., & Minaean, A. (2017). Experimental study of natural convective flow over a hot horizontal rhombus cylinder immersed in water via PIV technique. Journal of Applied Fluid Mechanics, 10(2), 735-747. https://doi.org/10.18869/ACADPUB.JAFM.73.239.27300.
Qiang, Y., Duan, T. C., Zhang, M. Z., Qi, L., & Wei L. J. (2024). Experimental study of aortic BMHV flow characteristics under different physiological conditions using PIV. Chinese Journal of Theoretical and Applied Mechanics, 56(6), 1807-1817. https://doi.org/10.6052/0459-1879-23-563.
Qiang, Y., Duan, T. C., Zhang, M. Z., Qi, L., Wei, L. J., & Wei, Z. Q. (2023a). Impact of bileaflet mechanical heart valve leaflet dysfunction on left ventricular blood flow: An experimental study. Physics of Fluids, 35(9), 091909. https://doi.org/10.1063/5.0166451.
Qiang, Y., Zhang, Q., Qi, L., Duan, T. C., Zhang, M. Z., & Wei, L. J. (2023b). Research on the design and control method of cardiac pulsating flow analog drive motor. Micromotors, 56(9), 26-32. https://doi.org/10.15934/j.cnki.micromotors.2023.09.009.
Qiu, Y. L., Chen, H. Y., Zeng, H. J., & Ji, L. (2022). Research on the way of adding tracer particles based on PIV experiment. Chemical Engineering of Oil And Gas, 21(3), 132-136. https://doi.org/10.3969/j.issn.1007-3426.2022.03.020.
Rajput, F. A., & Zeltser, R. (2023). Aortic Valve Replacement. StatPearls Publishing. PMID: 30725821.
Selmi, M., Chiu, W. C., Chivukula, V. K., Melisurgo, G., Beckman, G. A., Mahr, C., Aliseda, A., Votta, E., Redaelli, A., Slepian, M. J., Bluestein, D., Pappalardo, F., & Consolo, F. (2019). Blood damage in Left Ventricular Assist Devices: Pump thrombosis or system thrombosis? The International Journal of Artificial Organs, 42(3), 113-124. https://doi.org/10.1177/0391398818806162.
Thielicke, W., & Sonntag, R. (2021). Particle image velocimetry for MATLAB: accuracy and enhanced algorithms in PIVlab. Journal of Open Research Software, 9(1), 12. https://doi.org/10.5334/JORS.334.
Weinberg, E. J., Mack, P. J., Schoen, F. J., García-Cardeña, G., & Kaazempur Mofrad, M. R. (2010). Hemodynamic environments from opposing sides of human aortic valve leaflets evoke distinct endothelial phenotypes in vitro. Cardiovascular Engineering, 10(1), 5-11. https://doi.org/10.1007/s10558-009-9089-9.
Xu, M. B., He, G., & Wen, J. (2022). Background interference removal algorithm for PIV preprocessing based on improved local otsu thresholding. Chinese Journal of Biomedical Engineering (English Edition), 31(4), 147-159. https://doi.org/10.1007/978-3-031-51455-5_24.
Yang, Y., Wang, Z. W., Chen, Z., Wang, X., Zhang, L. F., Li, S. N., Zheng, C. Y., Kang, Y. T., Jiang, L. L., Zhu, Z. H., & Gao, R. L. (2021). Current status and etiology of valvular heart disease in China: a population-based survey, BMC Cardiovascular Disorders, 21(1), 1-9. https://doi.org/10.1186/s12872-021-02154-8.
Yoganathan, A. P., He, Z., & Jones, S. C. (2004). Fluid mechanics of heart valves. Annual Review of Biomedical Engineering, 6(1), 331-362. https://doi.org/10.1146/annurev-fluid-122414-034314.