Adawy, M. E., Heikal, M., Aziz, A. R., Munir, S., Siddiqui, M. I., & Mobility, E. (2018). Effect of boost pressure on the in-cylinder tumble- motion of GDI engine under steady-state conditions using Stereoscopic-PIV.
Journal of Applied Fluid Mechanics,
11(3), 733-742.
https://doi.org/10.18869/ACADPUB.JAFM.73.246.28506.
Akutsu, T., & Fukuda, T. (2005). Time-resolved particle image velocimetry and laser doppler anemometry study of the turbulent flow field of bileaflet mechanical mitral prostheses.
Journal of Artificial Organs,
8(3), 171-183.
https://doi.org/10.1007/s10047-005-0298-8.
Akutsu, T., & Matsumoto, A. (2010). Influence of three mechanical bileaflet prosthetic valve designs on the three-dimensional flow field inside a simulated aorta.
Journal of Artificial Organs, (4), 207-217.
https://doi.org/10.1007/s10047-010-0519-7.
Akutsu, T., & Saito, J. (2006). Dynamic particle image velocimetry flow analysis of the flow field immediately downstream of bileaflet mechanical mitral prostheses.
Journal of Artificial Organs,
9(3), 165-178.
https://doi.org/10.1007/s10047-006-0340-5.
Akutsu, T., Saito, J., Imai, R., Suzuki, T. X., & Cao, X. D. (2008). Dynamic particle image velocimetry study of the aortic flow field of contemporary mechanical bileaflet prostheses.
Journal of Artificial Organs,
11(2), 75-90.
https://doi.org/10.1007/s10047-008-0410-y.
Chandran, K. B., Khalighi, B., & Chen, C. J. (1985). Experimental study of physiological pulsatile flow past valve prostheses in a model of human aorta-I. Caged ball valves.
Journal of Biomechanics,
10(18), 763-765.
https://doi.org/10.1016/0021-9290(85)90051-X.
Chew, Y. T., Low, H. T., Lee, C. N., & Kwa, S. S. (1993). Laser anemometry measurements of steady flow past aortic valve prostheses.
Journal of Biomechanical Engineering,
115(3), 290-298.
https://doi.org/10.1115/1.2895489.
Dasi, L. P., Simon, H. A., Sucosky, P., Sucosky, P., & Yoganathan, A. (2009). Fluid mechanics of artificial heart valves.
Clinical and Experimental Pharmacology & Physiology,
36(2), 225-237.
https://doi.org/10.1111/j.1440-1681.2008.05099.x.
Fang, Y. J., Zhang, M., Sun, X. P., Zhang, J. F., & Qu, Y. F. (2021). Study on internal flow characteristics of non-newtonian fluids in mechanical stirred tank.
Journal of Mechanical Engineering,
57(20), 244-253.
https://doi.org/10.3901/jme.2021.20.244.
Fraser, K. H., Zhang, T., Taskin, M. E., Griffith, B. P., & Wu, Z. J. (2012). A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index.
Journal of Biomechanical Engineering,
134(8), 081002.
https://doi.org/10.1115/1.4007092.
Garg, P., Markl, M., Sathananthan, J., Sellers, S. L., Meduri, C.,& Cavalcante, J. (2023). Restoration of flow in the aorta: a novel therapeutic target in aortic valve intervention.
Nature Reviews Cardiology,
21(4), 264-273.
https://doi.org/10.1038/s41569-023-00943-6.
Ge, L., Leo, H., Sotiropoulos, F., & Yoganathan, A. P. (2005). Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments.
Journal of Biomechanical Engineering,
127(5), 782-797.
https://doi.org/10.1115/1.1993665.
Grigioni, M., Daniele, C., D’Avenio, G., & Barbaro, V. (2001). The influence of the leaflets’ curvature on the flow field in two bileaflet prosthetic heart valves.
Journal of Biomechanics,
34(5), 613-621.
https://doi.org/10.1016/S0021-9290(00)00240-2.
Gunning, P. S., Saikrishnan, N., McNamara, L. M., & Yoganathan, A. P. (2014). An in vitro evaluation of the impact of eccentric deployment on transcatheter aortic valve hemodynamics.
Annals of Biomedical Engineering,
42(6), 1195-1206.
https://doi.org/10.1007/s10439-014-1008-6.
Haghighi A. R., & Asl, M. S. (2015). Mathematical modeling of micropolar fluid flow through an overlapping arterial stenosis
. International Journal of Biomathematics,
04(08), 1550056.
https://doi.org/10.1142/S1793524515500564.
Haghighi, A. R., Aliashrafi, N., & Asl, M. S. (2020). An implicit approach to the micropolar fluid model of blood flow under the effect of body acceleration.
Mathematical Sciences,
14(3), 269-277.
https://doi.org/10.1007/s40096-020-00340-x.
Hatoum, H., Ahn, S., Lilly, S. M., Maureira, P., Crestanello, J. A., Thourani, V. H., & Dasi, L. P. (2022). Flow dynamics of surgical and transcatheter aortic valves: Past to present.
JTCVS Open,
9, 43-56.
https://doi.org/10.1016/j.xjon.2022.01.017.
Horstkotte, D., Haerten, K. J., Herzer, J. A., Seipel, L ., Bircks, W., & Loogen, F. (1981). Preliminary clinical and hemodynamic results after mitral valve replacement using St. Jude Medical prostheses in comparison with the Björk-Shiley valve.
The Thoracic and Cardiovascular Surgeon,
29(2), 93-99.
https://doi.org/10.1055/s-2007-1023451.
Knoch, M., Reul, H., Kröger, R., & Rau, G. (1988). Model studies at mechanical aortic heart valve prostheses-Part I: Steady-state flow fields and pressure loss coefficients.
Journal of Biomechanical Engineering,
110(4), 334-343.
https://doi.org/10.1115/1.3108450.
Leo, H. L., He, Z., Ellis, J. T., & Yoganathan, A. P. (2002). Microflow fields in the hinge region of the CarboMedics bileaflet mechanical heart valve design.
Journal of Thoracic and Cardiovascular Surgery,
124(3), 561-574.
https://doi.org/10.1067/mtc.2002.125206.
Linde, T., Hamilton, K. F., Navalon, E. C., Schmitz-Rode, T., & Steinseifer, U. (2012). Aortic root compliance influences hemolysis in mechanical heart valve prostheses: an in-vitro study.
The International Journal of Artificial Organs,
35(7), 495-502.
https://doi.org/10.5301/ijao.5000108.
Liu, Z. M., Xue, H. B., Yang, G., Pang, Y., Fang, Y. C., Li, M. Q., Qi, Y. P., & Shi, Y. (2020). PIV experimental study on the hemodynamics of aortic valve under varied tilted angles.
Chinese Journal of Theoretical and Applied Mechanics,
52(6), 1811-1821.
https://doi.org/10.6052/0459-1879-20-229.
Liu, Z. M., Yang, G., Pang, Y., Zhong, X. X., Li, M. Q., Xue, H. B., Qi, Y. P., & Shi, Y. (2019). Experimental study on hemodynamics of aortic valve under varied cardiac output using PIV.
Chinese Journal of Theoretical and Applied Mechanics,
51(6), 1918-1926.
https://doi.org/10.6052/0459-1879-19-231.
Pour, M. K., Nili-Ahmadabadi, M., Taherian, G., & Minaean, A. (2017). Experimental study of natural convective flow over a hot horizontal rhombus cylinder immersed in water via PIV technique.
Journal of Applied Fluid Mechanics,
10(2), 735-747.
https://doi.org/10.18869/ACADPUB.JAFM.73.239.27300.
Qiang, Y., Duan, T. C., Zhang, M. Z., Qi, L., & Wei L. J. (2024). Experimental study of aortic BMHV flow characteristics under different physiological conditions using PIV.
Chinese Journal of Theoretical and Applied Mechanics,
56(6), 1807-1817.
https://doi.org/10.6052/0459-1879-23-563.
Qiang, Y., Duan, T. C., Zhang, M. Z., Qi, L., Wei, L. J., & Wei, Z. Q. (2023a). Impact of bileaflet mechanical heart valve leaflet dysfunction on left ventricular blood flow: An experimental study.
Physics of Fluids,
35(9), 091909.
https://doi.org/10.1063/5.0166451.
Qiang, Y., Zhang, Q., Qi, L., Duan, T. C., Zhang, M. Z., & Wei, L. J. (2023b). Research on the design and control method of cardiac pulsating flow analog drive motor.
Micromotors,
56(9), 26-32.
https://doi.org/10.15934/j.cnki.micromotors.2023.09.009.
Rajput, F. A., & Zeltser, R. (2023). Aortic Valve Replacement. StatPearls Publishing. PMID: 30725821.
Selmi, M., Chiu, W. C., Chivukula, V. K., Melisurgo, G., Beckman, G. A., Mahr, C., Aliseda, A., Votta, E., Redaelli, A., Slepian, M. J., Bluestein, D., Pappalardo, F., & Consolo, F. (2019). Blood damage in Left Ventricular Assist Devices: Pump thrombosis or system thrombosis?
The International Journal of Artificial Organs,
42(3), 113-124.
https://doi.org/10.1177/0391398818806162.
Thielicke, W., & Sonntag, R. (2021). Particle image velocimetry for MATLAB: accuracy and enhanced algorithms in PIVlab.
Journal of Open Research Software,
9(1), 12.
https://doi.org/10.5334/JORS.334.
Weinberg, E. J., Mack, P. J., Schoen, F. J., García-Cardeña, G., & Kaazempur Mofrad, M. R. (2010). Hemodynamic environments from opposing sides of human aortic valve leaflets evoke distinct endothelial phenotypes in vitro.
Cardiovascular Engineering,
10(1), 5-11.
https://doi.org/10.1007/s10558-009-9089-9.
Xu, M. B., He, G., & Wen, J. (2022). Background interference removal algorithm for PIV preprocessing based on improved local otsu thresholding.
Chinese Journal of Biomedical Engineering (English Edition),
31(4), 147-159.
https://doi.org/10.1007/978-3-031-51455-5_24.
Yang, Y., Wang, Z. W., Chen, Z., Wang, X., Zhang, L. F., Li, S. N., Zheng, C. Y., Kang, Y. T., Jiang, L. L., Zhu, Z. H., & Gao, R. L. (2021). Current status and etiology of valvular heart disease in China: a population-based survey,
BMC Cardiovascular Disorders,
21(1), 1-9.
https://doi.org/10.1186/s12872-021-02154-8.