Numerical Study of a Supersonic Nozzle Gas Jet Laden with a Dry Powder Fire-extinguishing Agent Injected from a Bypass Injector

Document Type : Regular Article

Authors

School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

10.47176/jafm.18.4.2840

Abstract

To enhance the firefighting capabilities of traditional dry powder extinguishers, we incorporated an air-assisted supersonic nozzle, which is simulated using Euler-Lagrange interphase coupling to simulate the injection of firefighting agents into a supersonic, two-dimensional axisymmetric gas flow from a bypass injector. During the simulation, we employed our newly developed modified drag coefficient model, capable of accommodating a broad spectrum of particle Reynolds and Mach number conditions. Parameter studies show that an increase in the injector position, angle, and total pressure ratio generally causes a decrease in the average particle velocity vp,a, and an increase in the dispersion Ψp and velocity unevenness Φvp; an increase in the total pressure ratio of the main nozzle leads to an increase in Φvp and vp,a. However, under specific conditions, the monotonic dependency upon these parameters may be disrupted. For example, the performance indicators at the position of the injector near the nozzle throat and a larger total injector pressure ratio, as well as vp,a at smaller injection angles and Ψp at larger injection angles, may run counter to the monotonicity.

Keywords

Main Subjects


Bhattacharya, S., Lutfurakhmanov, A., Hoey, J. M., Swenson, O. F., Mahmud, Z., & Akhatov, I. S. (2013). Aerosol flow through a converging-diverging micro-nozzle. Nonlinear Engineering, 2(3-4), 103-112. https://doi.org/10.1515/nleng-2013-0020
Cao, C., Han, T., Xu, Y., Li, W., Yang, X., & Hu, K. (2020). The associated effect of powder carrier gas and powder characteristics on the optimal design of the cold spray nozzle. Surface Engineering, 36(10), 1081-1089. https://doi.org/10.1080/02670844.2020.1744297
Clift, R., Grace, J. R., & Weber, M. E. (1978). Bubbles, drops, and particles. Academic Press. https://doi.org/10.1080/07373939308916817
Foias, C., Manley, O., Rosa, R., Temam, R., & Mayer, M. E. (2002). Navier-stokes equations and turbulence. Physics Today, 55(10), 54-56.
Gilbert, M., Davis, L., & Altman, D. (1955). Velocity lag of particles in linearly accelerated combustion gases. Journal of Jet Propulsion, 25(1), 26-30. https://doi.org/10.2514/8.6578
Gosman, A., & Loannides, E. (1983). Aspects of computer simulation of liquid-fueled combustors. Journal of Energy, 7(6), 482-490.
Haiqiang, L., Ruowen, Z., Jiaxin, G., Siuming, L., & Yuan, H. (2014). A good dry powder to suppress high building fires. APCBEE Procedia, 9, 291-295. https://doi.org/10.1016/j.apcbee.2014.01.052
Henderson, C. B. (1976). Drag coefficients of spheres in continuum and rarefied flows. AIAA Journal, 14(6), 707-708. https://doi.org/10.2514/3.61409
Jebakumar, A. S., & Abraham, J. (2016). Comparison of the structure of computed and measured particle-laden jets for a wide range of Stokes numbers. International Journal of Heat and Mass Transfer, 97, 779-786. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.074
Ling, Y., Haselbacher, A., & Balachandar, S. (2011a). Importance of unsteady contributions to force and heating for particles in compressible flows. Part 2: Application to particle dispersal by blast waves. International Journal of Multiphase Flow, 37(9), 1013-1025. https://doi.org/10.1016/j.ijmultiphaseflow.2011.07.002
Ling, Y., Haselbacher, A., & Balachandar, S. (2011b). Importance of unsteady contributions to force and heating for particles in compressible flows: Part 1: Modeling and analysis for shock–particle interaction. International Journal of Multiphase Flow, 37(9), 1026-1044. https://doi.org/10.1016/j.ijmultiphaseflow.2011.07.001
Ling, Y., Wagner, J., Beresh, S., Kearney, S., & Balachandar, S. (2012). Interaction of a planar shock wave with a dense particle curtain: Modeling and experiments. Physics of Fluids, 24(11). https://doi.org/10.1063/1.4768815
Parmar, M., Haselbacher, A., & Balachandar, S. (2010). Improved drag correlation for spheres and application to shock-tube experiments. AIAA Journal, 48(6), 1273-1276. https://doi.org/10.2514/1.J050161
Parmar, M., Haselbacher, A., & Balachandar, S. (2011). Generalized Basset-Boussinesq-Oseen equation for unsteady forces on a sphere in a compressible flow. Physical Review Letters, 106(8), 084501. https://doi.org/10.1103/PhysRevLett.106.084501
Ranz, W. E., & Marshall, W. R. (1952). Evaporation from drops – Part 1. Chemical Engineering Progress, 48, 141-148.
Soliman, S., Abdallah, S., Gutmark, E., & Turner, M. G. (2011). Numerical simulation of microparticles penetration and gas dynamics in an axi-symmetric supersonic nozzle for genetic vaccination. Powder Technology, 208(3), 676-683. https://doi.org/10.1016/j.powtec.2011.01.008
Sutherland, W. (2009). The Viscosity of gases and molecular force. Philosophical Magazine, Edinburgh, (36), 507-531. https://doi.org/10.1080/14786449308620508
Wang, Y., Shen, J., Yin, Z., & Bao, F. (2021). Numerical simulation of non-spherical submicron particle acceleration and focusing in a converging–diverging micronozzle. Applied Sciences, 12(1), 343. https://doi.org/10.1080/02786820600615063
Zhang, W., Tainaka, K., Ahn, S., Watanabe, H., & Kitagawa, T. (2018). Experimental and numerical investigation of effects of particle shape and size distribution on particles’ dispersion in a coaxial jet flow. Advanced Powder Technology, 29(10), 2322-2330. https://doi.org/doi.org/10.1016/j.apt.2018.06.008
Zhu, Y., Cai, W., Wen, C., & Li, Y. (2009). Numerical investigation of geometry parameters for design of high performance ejectors. Applied Thermal Engineering, 29(5-6), 898-905. https://doi.org/10.1016/j.applthermaleng.2008.04.025