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ABSTRACT 

Air intakes are critical components in maximizing the efficiency of jet-powered 

engines. Their diverse designs, ranging from conventional shapes to innovative 

configurations, coupled with the intricate interplay of fluid dynamics, boundary 
layer effects, and structural considerations, render the determination of their 

performance characteristics a time-consuming task. However, a meticulous and 

confident evaluation of these characteristics is the key to achieving optimal air 

intake design and, consequently, significant enhancement of overall engine 

performance. This article assesses various meta-modeling approaches for 

predicting the performance characteristics of a twin air intake system. A 

comprehensive exploration of meta-modeling methods, particularly those 

specifically tailored for data derived from experiments, is presented. A database 

of 4000 experimentally obtained runs is utilized to construct train and test data 

for diverse models, including polynomials, decision trees, random forest 

regression, multivariate adaptive regression splines, and neural networks. The 
performance of each model is rigorously evaluated based on goodness of fit, 

precision, accuracy, monotonicity, and interpretability. This study provides a 

cost-effective and time-efficient alternative for predicting crucial flow 

parameters associated with the air intake of jet engines. The results reveal that 

the Random Forest Regression (RFR) model outperforms all other models 

across all evaluated metrics, demonstrating its superior effectiveness in 

predicting the performance characteristics of the twin air intake system.  
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1. INTRODUCTION 

The emergence of meta-models (or surrogate models) 

in the late 1980s (Box & Draper, 1987) revolutionized the 

modeling of complex systems. Since then, researchers 
have dedicated significant efforts to develop new methods 

and models to not only reduce the cost of experiments and 

numerical simulations but also provide means to filter raw 

data potentially contaminated with noise (Forrester et al., 

2008). This study focuses on analyzing meta-models 

frequently applied in practical engineering applications, 

prioritizing those commonly used in both experimental 

and numerical (CFD) simulations (Kianifar & Campean, 

2020). These models include polynomials, response 

surface methodology (RSM), regression splines, kriging, 

moving least squares (MLS), support vector regression 
(SVR), multivariate adaptive regression splines (MARS), 

radial basis function (RBF), and neural networks (NN). 

The performance of each model is evaluated based on 

accuracy, efficiency, and robustness. This study utilizes a 

set of experimental data for meta-modeling. Utilizing 

experimental data for meta-modeling offers several 

advantages. These models, constructed from real 
experimental data, are valuable as they represent real-

world phenomena with fewer assumptions compared to 

numerical simulations (Kleijnen, 2017). However, both 

experimental and numerical data have unique strengths 

and limitations. While experimental data may provide 

insights into actual physical systems, it can be affected by 

measurement errors, noise, and instrumentation 

constraints. Numerical simulations, on the other hand, 

offer high control and repeatability but may rely on 

assumptions and approximations that could affect their 

fidelity. Hence, the choice of data source for training AI  
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NOMENCLATURE 

Acronyms Roman Symbols 

AID Automatic Interaction Detection  PtAIP
  area weighted total pressure at AIP 

AIP Aerodynamic Interface Plane  Pt∞
  available total pressure at free stream 

AoA Angle of Attack (°)  Pref  pressure reference (101325 pa) 

AoSS Angle of Side Slip (°)  Pθ  

averaged total pressure of a circular sector 

of θ degrees which has the highest total 
pressure deficiency (pa) 

BWB Blended-wing-body  Tref  temperature reference (288.15k) 

CART Classification and Regression Trees  𝑋𝑖 , 𝑥𝑖  
independent or predictor variables (i =
1,2, … , p) 

CCC Concordance Correlation Coefficient  𝑎𝑖  coefficients (i = 1,2, … , p) 
CFD Computational Fluid Dynamics  𝑓𝑖(𝑋)  base function (i = 1,2, … , p) 
DoE Design of Experiment  qAIP  dynamic pressure at aip (engine face) (pa) 

DSM Double-stage Metamodel  y  mean of actual values 

DTR Decision Tree Regressor  N 
number of observations, number of nodes in 
the neural network 

GBR Gradient Boosting Regression  R2 r-squared 
GCV Generalized Cross Validation  BF(x)  basis function 

GUIDE 
Generalized Unbiased Interaction 

Detection and Estimation 
 DC60  

total pressure distortion coefficient over a 

60° sector of aip  

KNN K-Nearest Neighbors  DCθ  
total pressure distortion coefficient over a θ 
degree sector of aip  

KRCC Kendall's Rank Correlation Coefficient  L  number of layers in neural network 

LR Linear Regression  M  Mach number 

MAE Mean Absolute Error  P  pressure (pa) 
MARS Multivariate Adaptive Regression Splines  T  temperature (k) 

MFR Mass Flow Rate  Var( ) variance 

MFRC Corrected Mass Flow Rate  Y, ŷ 
predicted or expected value of the 
dependent variable 

MLR Multiple Linear Regression  cov(X, Y)  
covariance between the predicted values (x) 

and the true values (y) 
MLS Moving Least Squares  enp  number of basis functions 

MSE Mean Squared Error  j  number of independent variables 

NN Neural Networks  n  number of input features 

OLS Ordinary Least Squares  p  order of polynomial  

PR Total Pressure Recovery  ref  reference value 

RBF Radial Basis Function  t  total (stagnation) value 

ReLU Rectified Linear Unit  y  actual (true) value 
RFR Random Forest Regression    
RMSE Root Mean Squared Error  Greek Symbols 

RSM Response Surface methodology  
β0 , βn constant and coefficient of the ith basis 

function 
SCC Spearman correlation coefficient  Θ temperature ratio (tt/tref) 
SVR Support Vector Regression  δ pressure ratio (pt/pref) 
UAV Unmanned Aerial Vehicles  ϵ residual (error of the regression) 

 

models depends on the specific context and objectives of 

the study. 

 Experimental data-based models can be used to model 

real-world systems, enhancing their applicability to 

practical engineering problems (Kianifar & Campean, 

2020) and fostering a deeper understanding of the system 

(Kleijnen, 2009). They can also prove more efficient and 

cost-effective when simulations demand high 

computational resources (Simpson et al., 2001). The 

application of metamodeling for optimizing air intake 

aerodynamics in jet engines has been explored in several 

studies, including the use of kriging models with efficient 

global optimization algorithms and multi-objective 

surrogate models (Drężek et al., 2022).  

 Typically, meta-modeling involves selecting an 

experimental design for data generation, choosing a 

suitable model to represent the data, and subsequently 

fitting the model to the data (Simpson et al., 2001). Several 

approaches have been proposed for meta-modeling using 
experimental data. Kriging models are often employed 

when data are obtained from a larger experimental domain 

(Kleijnen, 2009). Adaptive design of experiments (DoE) 

methodologies have been developed for global Kriging 

meta-modeling applications, allowing for the adaptive 

selection of new experimental points based on the current 

metamodel (Kyprioti et al., 2020). A recent algorithm for 

adaptive computer experiments facilitates the construction 

of a metamodel using large datasets (Erickson, 2019). In 

aerodynamic design optimization, a double-stage 

metamodel (DSM) has been proposed that integrates the 

advantages of both interpolation and regression meta-
models and utilizes experimentally obtained data as input 

(Friedman & Pressman, 1988). In another study it has been 

demonstrated that a single metamodel can be deemed 
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reliable when evaluating an initial set of experiments from 

the simulator (Kleijnen, 2009). 

 This study aims to identify a meta-model (or multiple 

models) that surpasses others in predicting the 

performance characteristics of a specific air intake. The air 

intake is a twin-type model with a circular cross-section 
and has been subjected to prior experimental studies in a 

wind tunnel facility. Independent variables controlled 

during the experimental campaign include free stream 

Mach number (M), the air intake's attitude in terms of 

angle of attack (AoA), angle of side slip (AoSS), and mass 

flow rate passing the intake (MFR).  

 The variables M, AoA, AoSS, and MFR were chosen 

for this study as they capture the primary aerodynamic 

factors influencing total pressure recovery (PR) and 

circumferential distortion (DC60). Other factors, such as 

material properties, fabrication processes, and size, were 

not included as they were deemed secondary under the 
controlled conditions of the experimental setup. The 

intake model used in this study was fabricated with a 

smooth surface and tested at scaled conditions to maintain 

dynamic similarity, minimizing the influence of these 

factors on the flow parameters. 

 Pressure Recovery (PR) and the 60° Distortion 

Coefficient (DC60) were chosen as the output variables 

for this study due to their critical importance in assessing 

the aerodynamic performance of air intake systems. PR 

quantifies the efficiency of total pressure recovery, 

directly impacting engine thrust and efficiency. DC60 
measures the circumferential non-uniformity of total 

pressure, which affects compressor stability and engine-

intake compatibility. Together, these parameters provide a 

holistic assessment of the intake’s ability to deliver 

uniform and high-energy airflow to the engine, aligning 

with the primary objectives of intake design in aerospace 

applications. 

 While this can be categorized as a low-dimensional 

problem with only four independent variables, the 

interaction between these variables introduces non-

linearity, increasing the problem's complexity. Due to 
limited available experimental results, the meta-modeling 

conditions are constrained by a sample size with minimal 

information regarding data uncertainty (noise). 

Identifying the most suitable model for this specific flow 

problem has the potential to significantly reduce the time 

and cost required for future experimental campaigns. 

Additionally, prioritizing parametric models expressible 

as explicit functions facilitates their implementation in 

future applications. 

 This paper is organized as follows: The introductory 

section provides a comprehensive overview of the twin air 

intake under investigation, outlining the key aerodynamic 
performance parameters crucial for subsequent analysis. A 

description of commonly employed meta-modeling 

methods, specifically tailored for experimentally derived 

data, is given alongside common and less common 

statistical metrics used for model evaluation. The 

methodology section offers insights into the meticulous 

process of preparing the experimental database, 

emphasizing data normalization, scripting procedures, and 

systematic result extraction. The subsequent section 

critically evaluates and discusses the performance of 

various meta-models utilized in the study, shedding light 

on their effectiveness in capturing the intricacies of the 

twin air intake system. Finally, the paper concludes with 

the findings of this research. 

1.1. Twin Air Intake 

Designing an air intake system is a complex and 

multifaceted job, demanding consideration of diverse 

parameters categorized as either geometric or relating to 

the fluid dynamics of the flow. Beyond geometric factors, 

achieving optimal performance and efficiency necessitates 

meticulous analysis and evaluation of the internal flow. To 

assess the effectiveness of a specific air intake design, 

conducting experiments with scaled prototypes within 

controlled environments, such as wind tunnel facilities, is 

essential. These experiments offer valuable insights into 

the behavior of the air intake and facilitate identification 
of key performance indicators. Comprehensive analysis of 

such intricate engineering systems necessitates either an 

extensive and time-consuming experimental campaign or 

access to a high-performance computing facility with 

significant computational resources.  

 This study utilizes available experimental data 

collected for a specific twin air intake to analyze the total 

pressure recovery and its distortion at the aerodynamic 

interface plane (AIP). These two parameters are crucial in 

evaluating the performance of the air intake system, as 

they directly influence its efficiency and functionality 
(Seddon et al., 1999). Figure 1 schematically depicts the 

Y-shaped air intake duct commonly employed in single-

engine high-speed aircraft (Patel et al., 2005; El-Sayed, 

2016). Typically, the intakes are located on the sides of the 

fuselage, with the two sections of the duct converging 

within the fuselage to form a single duct. The performance 

of Y-shaped intakes is significantly influenced by the 

aircraft fuselage, prompting numerous studies to focus on 

examining the intake flow characteristics during various 

flight phases and propose methods for enhancing their 

performance. 

 In steady-state flight, characterized by zero angle of 

attack and sideslip angle and thus symmetric inflow 

conditions, each intake in a conventional Y-shaped 

diffuser system supplies an equal share of the engine's 

required air mass flow. However, recent research by 

Askari and Soltani (2020) identified the presence of 

asymmetric flow within diverterless supersonic Y-shaped 

 

 

Fig. 1 Schematics of a Twin (Y-shaped) air intake 
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diffusers. Furthermore, inherent unsteadiness and nonzero 

sideslip angles (asymmetric conditions) inevitably cause 

unequal mass flow distribution between the left and right 

diffuser limbs. Despite the seemingly smooth airflow 

within each individual duct, significant distortion is highly 

likely to occur upon mixing at the aircraft integration point 
(AIP) (El-Sayed, 2016). Therefore, the assessment of total 

pressure recovery, alongside the evaluation of its 

circumferential distortion, assumes critical importance 

when examining the compatibility between the engine and 

the intake system. This compelling factor necessitates 

prioritizing these two aspects as primary objectives within 

the present modeling study. For brevity, a concise 

explanation of each factor follows. 

1.2. Total Pressure Recovery 

Maximizing the total pressure of the free stream air is 

crucial for the performance of any air-breathing engine. 

This responsibility falls upon the air intake, which strives 
to recover the highest possible pressure. The degree of 

total pressure recovered at the aerodynamic interface 

plane (AIP) is quantified by the total pressure recovery, 

defined as the ratio of the surface-averaged total pressure 

at the AIP to the free stream total pressure. This 

relationship is mathematically expressed by Equation (1): 

𝑃𝑅 =
𝑃𝑡 𝐴𝐼𝑃

𝑃𝑡 ∞

 (1) 

where PR denotes intake total pressure recovery, 𝑃𝑡 𝐴𝐼𝑃
 is 

the area weighted total pressure at AIP, and 𝑃𝑡 ∞
 is the 

available total pressure at free stream (Seddon et al., 

1999). PR can range between 0 and 1 with the maximum 

value of 1 which shows 100% of total pressure recovered 

at AIP. Total pressure values are normally obtained by a 

circular rake which consists of an array of tubes equally 

distributed over AIP as illustrated in Fig. 2. 

 

 

Fig. 2 Schematics of a Pressure rake for total pressure 

acquisition 

 

1.3. Total Pressure Circumferential Distortion 

Coefficient 

It is possible to evaluate the distortion of different 

flow variables (temperature, pressure, and velocity) over 

the AIP. The distortion in velocity, commonly referred to 
as swirl, and deviations in temperature are not the focus of 

this study and are therefore excluded from the analysis. 

The total pressure distortion can be expressed either 

circumferentially or radially. In this study, only the 

circumferential distortion is introduced which is obtained 

by (Seddon et al., 1999):  

𝐷𝐶𝜃 =
𝑃𝑡𝐴𝐼𝑃

− 𝑃𝜃

𝑞𝐴𝐼𝑃

 (2) 

This is one of the many expressions used in the literature 

to define the deviation of total pressure. In this equation, 

𝑞𝐴𝐼𝑃  is the dynamic pressure at the engine face (AIP) and 

𝑃𝑡 𝐴𝐼𝑃
 is the average of all total pressure readings over AIP. 

𝑃𝜃 is the averaged total pressure of a circular sector of θ 

degrees which has the highest total pressure deficiency. 

Total-pressure contours and θ sector for definition of 

distortion coefficient is schematically shown in Fig. 3. If 

the case of θ=60°, the calculated distortion coefficient is 

known as DC60. The 60° sector distortion coefficient 

(DC60) was chosen for this study due to its widespread 

use in the aerospace industry and its relevance to assessing 

compatibility with modern jet engines. The 60° sector 

captures critical distortion effects over a representative 
portion of the compressor face, making it an industry-

standard metric. While other sector angles (e.g., 30° or 

45°) could provide additional insights, they were not 

included in this study to maintain consistency with 

established practices and facilitate comparison with 

existing literature. 

 

 
Fig. 3 60° sector for calculating DC60 distortion 

coefficient (Reproduced from Seddon et al. 1999) 

 

 Numerous flow parameters are known to influence the 

performance metrics of air intake. This study considers the 
free stream Mach number (M), angle of attack (AoA), 

angle of side-slip (AoSS), and the mass flow rate passing 

the aerodynamic interface plane (MFRC) as the input  

factors impacting the output variables: Pressure Ratio 

(PR) and Distortion Coefficient 60 (DC60). Therefore, the 

objective is to develop a meta-model that optimally fits 

this multivariate problem, as depicted in Fig. 4. 

 It is noteworthy that the corrected mass flow rate 

(MFRC) is obtained by:  

𝑀𝐹𝑅𝐶 = 𝑀𝐹𝑅.
√Θ

𝛿
,        Θ =

𝑇𝑡

𝑇𝑟𝑒𝑓

 , 𝛿 =
𝑃𝑡

𝑃𝑟𝑒𝑓

 (3) 
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Inputs  Outputs 

M MFRC 

 

PR 

AoA AoSS DC60 

Fig. 4 Inputs and Outputs of the problem 

 

 The reference temperature (𝑇𝑟𝑒𝑓) and pressure (𝑃𝑟𝑒𝑓) 

values are 288.15 K and 101325 Pa, respectively. 

Additionally, 𝑇𝑡  and 𝑃𝑡  represent the area-averaged total 

temperature and pressure at the aerodynamic interface 

plane (AIP), respectively. These values, along with the 

pressure readings from the total rake and static ports 

distributed across the inner walls of the intake at the AIP 

plane, are used to calculate the mass flow rate (MFR) 

passing the AIP. Typically, a blockage (mass flow plug) 

located at the back end of the duct regulates the mass flow 

rate. 

 The data employed in this study originates from 

previously conducted experiments, where a series of 

discrete points were collected to characterize the air 

intake's behavior under various operating conditions. The 

database comprises approximately 4000 data points, each 

representing a unique combination of the below-

mentioned independent input variables. The 

comprehensive dataset is believed to be acquired across a 

broad spectrum of angle of attack, angle of sideslip, free 

stream Mach number, and adjusted mass flow rate at the 

air intake, enhancing confidence in the generalizability of 
the results. However, design of Experiment (DoE) 

methodologies are often employed to generate a cost-

effective database with the minimal number of 

experiments required. The present database originates 

from previous research activities conducted without 

utilizing DoE techniques. Consequently, the current 

sample set may potentially contain noise or fail to 

comprehensively represent the true behavior of the air 

intake. This necessitates the development of a suitable 

model that can accurately predict the air intake's 

performance characteristics at unknown points, i.e., points 
not covered by the measured data, effectively filling the 

gaps within the existing experimental data. Such a model 

is known as a "surrogate model" or "meta-model" in the 

engineering community (Kianifar & Campean, 2020). 

This study aims to fulfill this requirement by constructing 

a robust and reliable model capable of accurately 

estimating the air intake's behavior beyond the limitations 

of the available experimental data. By leveraging 

advanced mathematical and statistical techniques, this 

model will offer valuable insights into the performance 

characteristics of the air intake system. Furthermore, it 
will equip engineers and designers with a powerful tool 

for optimizing the design process, identifying areas for 

improvement, and ultimately enhancing the overall 

performance of air intake systems. 

1.4. Meta-Modeling 

Meta-modeling refers to the construction of surrogate 

models or statistical models that approximate the behavior 

of a complex system or process based on a limited set of 

input-output data. In the context of data analysis, meta 

modeling and surrogate modeling are interchangeably 

employed (Kianifar & Campean, 2020), with meta 

modeling commonly associated with simulating a model. 

Nevertheless, both methodologies are considered valid for 

analyzing either experimentally driven or simulated data. 
The surrogate model is then used to predict the system's 

behavior or response for new input conditions, without the 

need for computationally expensive or time-consuming 

simulations or experiments. The challenge here is to find 

the most appropriate model for a particular physical 

system; in other words, there is no such universal model 

that fits to all physical phenomena. In the essence of 

aerodynamics of air intakes, the physical parameters are 

pressure, temperature, velocity, and their distribution. The 

aim here is to focus on the total pressure and its distortion 

level. Hence, the model which will hopefully best fits for 

this specific problem should be certainly reevaluated for 

other parameters as well as physical problems.  

Metamodeling techniques are typically categorized 

into two types: parametric and non-parametric ones. 

Parametric models explicitly rely on the underlying 

structure of the model. On the other hand, non-parametric 

methods (e.g. Radial Basis Function (RBF), Neural 

networks, Decision Trees, etc.) utilize experimental 

measurements to establish the relationship among the 

parameters without a need of explicit assumptions about 

the model. In this study we compare between parametric 

and non-parametric models. We start from the simplest 
ones (linear Regressor) and dive into more complicated 

ensemble models like Random forest Regressor and 

Gradient Boosting Regression (GBR). The comparison 

then will continue with Decision trees and MARS models 

and then some Neural nets with different hidden layers.  

 In this study a total of nine distinct methods has been 

used to model the experimentally driven data set:  

Linear regression; In order to implement a linear 

regression model on a database containing multiple input 

and output variables, the multiple linear regression (MLR) 

technique can be employed. Multiple linear regression is 
an advanced form of simple linear regression that 

incorporates multiple predictor variables to forecast the 

value of a response variable (Schneider et al., 2010). 

Polynomials (Morris & Mitchell, 1995), with simple 

structures, less computational effort requirement, and 

better smoothing capability. On the other hand, it has been 

shown that they are very prone to give erroneous results in 

highly nonlinear and large scale problems (Kianifar & 

Campean, 2020).  

Decision tree (Jena & Dehuri, 2020) which can be used 

for both classification and regression tasks. The regression 

decision trees differ from classification trees by 
incorporating values or piecewise models at their leaves 

instead of class labels (Kim et al., 2007). Several 

commonly used regression tree algorithms exist, including 

Automatic Interaction Detection (AID), Classification and 

Regression Trees (CART), Multivariate Adaptive 

Regression Splines (MARS), Generalized Unbiased 

Interaction Detection and Estimation (GUIDE), M5, and 

M5’ (Jena & Dehuri, 2020). The decision tree model 
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utilized in this study is based on the Classification and 

Regression Tree (CART) algorithm. This approach, 

implemented through the Scikit-learn library in Python, 

constructs binary trees by splitting the data recursively 

based on the feature that minimizes the mean squared error 

(MSE) at each node. 

Gradient Boosting Regression (GBR) which is an 

additive modeling approach where each subsequent model 

is built to correct the mistakes made by the previous 

models. The learning process is guided by the gradient 

descent optimization algorithm, which minimizes the loss 

function of the overall ensemble. It has been used for a 

wide range of applications such as monitoring and 

prediction systems (Aziz et al., 2020) and forecasting 

power in wind energy (Singh et al., 2021). 

Random Forest Regression (RFR) which is an ensemble 

learning method that combines multiple decision trees to 

perform regression tasks. It utilizes the principles of 
bagging and random feature selection to build a robust and 

accurate regression model. 

Multivariate Adaptive Regression Splines (MARS) - It 

is a regression technique which is completely driven by 

data without any underlying assumptions about the 

relationship between dependent and independent variables 

(Friedman, 1991). This algorithm has been used 

extensively in many engineering problems such as 

crashworthiness simulation (Yang et al., 2000) and 

optimization (Wang et al., 2011), waste water treatment 

(Chen et al., 2006), process simulation (Li et al., 2010) as 

well as building simulation (Van Gelder et al., 2014). 

Radial basis functions (RBF) – RBF is a popular method 

used in meta-modeling for aerodynamics and aerospace 

engineering. It is a type of interpolation method that uses 

a radial basis function to approximate the relationship 

between input and output variables when they are 

nonlinear and complex. In meta-modeling, RBF is used to 

build a surrogate model that can predict the behavior of a 

complex system based on a limited set of input parameters. 

An example of RBF meta-modeling in aerospace is the 

prediction of aerodynamic coefficients for a blended-
wing-body (BWB) configuration. In a recent study, 

researchers used RBF to build a surrogate model for the 

prediction of lift and drag coefficients for a BWB 

configuration (Yang et al., 2018). RBF is also used in 

combination with other methods, such as neural networks, 

for meta-modeling in aerospace and aerodynamics. For 

example, a recent study used a combination of RBF and 

neural networks to build a surrogate model for flight load 

calculation (Yan et al., 2023). 

K-Nearest Neighbors (KNN) – The term "neighbors" 

refers to data points that are close to each other in the 

feature space. K-Nearest Neighbors (KNN) regression is a 
non-parametric method that predicts the output for a given 

input by averaging the outputs of its k nearest neighbors 

in the feature space. The choice of k significantly impacts 

the model's performance, with smaller values of k 

capturing local variability and larger values smoothing the 

predictions. This study evaluates the performance of KNN 

regression for predicting aerodynamic parameters by 

optimizing k through cross-validation. This algorithm 

classifies a new data point by identifying the majority 

class among its k nearest neighbors (Altman, 1992). The 

choice of k, the number of neighbors considered, is a 

crucial parameter that influences the model's performance. 

It uses the entire dataset for regression, making it 

particularly useful for applications with large amounts of 
data and where the decision boundary is highly irregular 

(Le Clainche et al., 2023). It has been used in number of 

applications like instance-based algorithm for making 

predictions (Li et al., 2022), aircraft performance 

improvement (Le Clainche et al., 2023), recognition of 

large-scale supersonic inlet flow patterns (Wu et al., 

2022), and rotary-wing UAVs (Wang et al., 2019).  

Neural networks (NN) – Neural networks have emerged 

as powerful tools in meta-modeling within engineering 

applications, revolutionizing the way complex systems are 

analyzed and optimized. These networks can efficiently 

capture and replicate the underlying relationships between 
various design parameters and performance metrics, 

enabling engineers to rapidly explore design spaces and 

identify optimal configurations. Neural networks excel in 

capturing the nonlinearities and intricate dependencies 

present in aerodynamic systems, providing a more 

accurate representation than traditional analytical models. 

This capability significantly accelerates the design 

iteration process and contributes to the development of 

more fuel-efficient and aerodynamically superior aircraft.  

Neural networks are particularly well-suited to the task 

of meta-modeling because they can learn complex 
relationships between inputs and outputs, and can 

generalize well to new data. One example of neural 

network meta-modeling in aerospace is the prediction of 

noise radiated by an array of propellers. In a recent study, 

researchers used a deep neural network approach to build 

a surrogate model for this prediction (Poggi et al., 2022). 

Another example is the modeling of aerodynamic data 

using a convolutional neural network. This approach has 

been used to predict airfoil lift and drag coefficients for 

various shapes defined by B-spline curve variables and 

flight status variables (Zan et al., 2022). In a recent study 
on flight loads, multiple algorithms have been analyzed 

and it was found that neural network residual Kriging was 

the most accurate method for predicting flight loads (Yan 

et al., 2023). Other examples can be given for a study that 

have used neural networks for aerodynamic optimization 

efficiency improvement (Gabriel Pereira Gouveia da 

Silva, 2019), and for surrogate modeling in aerodynamic 

design applications (Sun & Wang, 2019).  

 Evaluating each of the above mentioned models 

necessitates the use of specific statistical metrics, some 

well-established in the literature and others less commonly 

employed. These metrics are briefly described as follows.  

 R-squared (R2) measures the proportion of the 

variance in the target variable that is predictable from the 

independent variables. A higher R2 indicates a better fit. 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1

 (4) 

 Mean squared error (MSE) calculates the average 

squared difference between predicted and actual values. 
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Lower MSE indicates better performance. 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

 (5) 

 MSE is actually the variance of the error where a high 

value indicates that the model is sensitive to changes in the 

training data and may not generalize well to new, unseen 
data. Root mean squared error (RMSE) is the square root 

of MSE. It provides a measure in the original units of the 

target variable, making it easier to interpret. 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (6) 

 Mean Absolute Error (MAE) calculates the average 

absolute difference between predicted and actual values. 

Like RMSE, it is in the original units. 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − �̂�𝑖|

𝑁

𝑖=1

 (7) 

 MAE and Bias error are changing similarly. In other 
words, a small bias or MAE indicates that, on average, the 

model's predictions are close to the true values. Balancing 

bias (MAE) and variance (MSE) is crucial for model 

performance. 

 Prediction interval provides a range within which the 

actual response is likely to fall with a certain level of 

confidence. This is useful for quantification of uncertainty 

in predictions in a regression problem.  

 Concordance Correlation Coefficient (CCC) is a 

measure of agreement between observed and predicted 

values, considering both precision and accuracy. The CCC 

is used to evaluate how well the predictions of a model 
align with the observed outcomes. The CCC is an 

extension of the Pearson correlation coefficient (PCC) 

(Pearson, 1895), and it takes into account both precision 

and accuracy. It measures not only how well the points fall 

on a line (correlation) but also how well the line fits the 

45-degree line through the origin (accuracy). The formula 

for the Concordance Correlation Coefficient is given by: 

𝐶𝐶𝐶 =
2 × 𝑐𝑜𝑣(�̂�, 𝑌)

𝑉𝑎𝑟(�̂�) + 𝑉𝑎𝑟(𝑌) + (�̂� − 𝑌)
2 (8) 

where cov (X, Y) is the covariance between the predicted 

values (X) and the true values (Y), 𝑉𝑎𝑟(�̂�), 𝑉𝑎𝑟(𝑌), �̂�, 

and 𝑌  are the variances and averages of X and Y, 

respectively. The CCC ranges from −1 to 1 where 1 

indicates perfect concordance (perfect agreement between 

predicted and observed values), 0 indicates no 

concordance (random agreement), and −1 indicates 

perfect discordance (systematic disagreement). Therefore, 

in the context of CCC, a bigger number is better. 

 Kendall's Tau (Kendall rank correlation) and 

Spearman's Rank Correlation are metrics which assess the 

monotonic relationship between predicted and actual 

values, which can be useful when the assumption of 
linearity is not met. The value for both metrics ranges from 

-1 to 1, where 1 indicates perfect agreement, -1 indicates 

perfect disagreement, and 0 indicates no correlation. 

Kendall's Rank Correlation Coefficient (KRCC) and 

Spearman correlation coefficient (SCC) are both more 

suitable for cases where the relationship between variables 

may be monotonic but not necessarily linear.  

2.  METHOD 

The experimental data comprising 4,000 data points 
were obtained through a comprehensive series of wind 

tunnel tests conducted previously by the authors. The 

experiments were performed in a Tri-sonic wind tunnel. 

Measurements were acquired using calibrated total 

pressure rakes and static pressure ports, strategically 

placed at the aerodynamic interface plane (AIP). The free 

stream conditions, including Mach number (M), angle of 

attack (AoA), angle of sideslip (AoSS), and mass flow rate 

(MFR), were systematically varied to cover a broad 

operating envelope. Data processing techniques, including 

filtering and normalization, were employed to minimize 

noise and ensure data reliability. Details of the 
experimental setup, instrumentation, and procedures are 

excluded since they fall outside the scope of this study. 

The original data set comprises 4,000 observations 

(excluding unreliable points), presented in a general 

format in Table 1. Within the current context, this data 

represents the input-output relationship of the system 

under investigation, with the first four variables serving as 

inputs and the last two columns representing the responses 

or outputs. 

Normalization of a dataset is a frequently required 

step for various machine learning models. Poor 
performance may occur if the individual features deviate 

significantly from the characteristics of standard normally 

distributed data. The raw input variables are then 

normalized by scaling the input matrix with the help of 

Scikit-learn preprocessing library in python. The 

normalization includes removing the mean and scaling to 

unit variance (i.e. standard scaler). The same set of 

training data (80%) and test data (20%) are used for all the 

models under investigation. Normalized range of input 

parameters are given in Table 2. 

 

Table 1 The original dataset structure 

 Input Variables (Factors) Output Variables (Responses) 

Data 

point 

Free Stream 

Mach 

Number 

Angle of 

Attack 

Sideslip 

angle 

Corrected Mass 

Flow Rate passing 

through AIP 

Total Pressure 

Recovery at 

AIP 

Circumferential 

Distortion in Total 

Pressure at AIP 

 M AoA AoSS MFRC PR DC60 

1       

2       

…       
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Table 2 Normalized range of input parameters 

Factor Number of levels Normalized range 

AoA 15 [-1.61 +2.30] 

AoSS 17 [-1.06 +2.31] 

M 18 [-1.85 +1.98] 

MFRC - [-1.81 +1.61] 

 

 The preprocessed experimental data is used to train a 

surrogate model, which is a mathematical model. 

Statistical models like Gaussian process regression and 

response surface methodology will remain out of the scope 

of this study. The surrogate model learns the patterns and 
relationships in the data and creates a mathematical 

representation of the system's behavior. The trained 

surrogate model is validated using a separate set of 

experimental data. This step ensures that the surrogate 

model accurately captures the system's behavior within the 

range of the training data. Cross-validation techniques are 

not used since the performance of all models has to be 

determined with a same set of data. Models and metrics 

are implemented using scikit-learn and scipy packages 

available in Python. For neural networks, TensorFlow is 

used and where necessary, user built functions are defined. 
The performance parameters are generally expressed in 

plots which are generated using matplotlib and 

Microsoft® Excel. Once the meta model is validated, and 

the performance of the models on the parameters is 

evaluated, the target surrogate model would be selected 

and can be used to predict the system's response for new 

input conditions. This could be a point that was not part of 

the original experimental data or an erroneous or 

suspicious measurement point.  

 In the initial stage of investigation, it is necessary to 

choose the most effective model in each of the polynomial 

and neural network categories. Therefore, first, a detailed 
evaluation of different polynomial models and neural 

networks was done. 

 In this study we use 2, 3, 4, 5, 6 and 7th order 

polynomials. Since there are 4 individual input variables, 

the complete set of terms forming a polynomial fit will be 

obtained as follows. The Polynomial fit package being 

used is PolynomialFeatures in Scikit-learn which by 

default sets the polynomial with degree 2 as: 

• Four individual input terms (i.e. 𝑥1, 𝑥2, 𝑥3, 𝑥4) also 

known as linear terms 

• Four squared terms (i.e. 𝑥1
2, 𝑥2

2, 𝑥3
2, 𝑥4

2) also known as 

squared terms  

• six iteration terms (i.e. 

𝑥1𝑥2, 𝑥1𝑥3, 𝑥1𝑥4, 𝑥2𝑥3, 𝑥2𝑥4, 𝑥3𝑥4) also known as 

interaction terms.  

these add up to a total of 14 terms, each associated with a 

coefficient in the fitted polynomial equation. This is also 

known as full quadratic equation. A complete third order 

polynomial fit consists of 4 linear terms, 4 quadratic terms, 

6 interaction terms, 4 cubic terms, and 17 cubic interaction 

terms. actually the total number of terms generated by the 

polynomialFeatures class in scikit-learn can be calculated 

using the binomial coefficient with the general 

formulation of ((n+p)|p) with n=4 (for 4 input features) 

and p=3 as the degree of polynomial.  

 Among the various polynomial fits applied to pressure 
recovery and distortion data, the seventh-degree 

polynomial exhibits superior performance, as evidenced 

by Fig. 5. This performance is observed in both 

minimizing errors and maximizing residual values.  

The potential for overfitting was carefully mitigated 

during the development of the 7th-order polynomial 

model. The dataset was divided into training and test 

subsets, and the model’s performance was validated on the 

independent test data. Additionally, the complexity of the 

polynomial model was evaluated against lower-order 

polynomials, ensuring that the 7th-order model provided 

the best trade-off between accuracy and robustness. 
Normalization of input variables further enhanced the 

model’s stability and reduced susceptibility to overfitting. 

 

 

Fig. 5 Error and R2 values for different polynomial fits on (a) PR and (b) DC60 data 
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 Thus, the seventh-degree polynomial (Poly 7th.) is 

chosen as the representative of polynomial models for 

subsequent comparisons with other modeling methods. 

 Preliminary evaluation of neural network models has 

been performed utilizing a grid search approach across a 

range of hyper parameter values. Different combinations 
of the number of hidden layers (L = 1, 2, and 3) and the 

number of nodes per layer (N = 8, 16, 32, 64, 128, 256, 

512, and 1024) were examined. The activation function 

employed was systematically evaluated using three widely 

used choices: sigmoid, tanh, and Rectified Linear Unit 

(ReLU). This evaluation aimed to discern the impact of 

each activation function on predictive outcomes. As 

evaluation metrics, mean squared error (MSE) and mean 

absolute error (MAE) were employed, representing 

established benchmarks for assessing model accuracy. 

The analysis revealed that, among the considered 

activation functions, ReLU demonstrated superior 
efficacy in addressing the specific complexities of the 

problem at hand. This finding underscores the importance 

of judicious selection of the activation function and 

highlights ReLU as an optimal choice for enhancing the 

predictive capabilities of neural networks within the 

context of this study's problem domain. 

 In the context of neural network training, an epoch is 

one complete pass through the entire training dataset 

during the training phase. During each epoch, the neural 

network's parameters (weights and biases) are adjusted 

based on the error (loss) calculated on the training data. 
The loss is considered to be the mean squared error in the 

current study. In practice, the training dataset is divided 

into smaller subsets called batches. The model's 

parameters are updated after processing each batch. The 

size of the batch is a hyper parameter known as the batch 

size. One epoch is completed when the entire training 

dataset has been processed by the neural network once. It 

consists of multiple batches. An iteration refers to the 

process of updating the model's parameters using a single 

batch of data. So, for example in an epoch with a batch 

size of 32, there would be 

total number of samples

Batch size
=  

4000 × 0.8

32
= 100 

Iterations.  

 If the epoch is selected to number “A”, the neural 

network processes the entire training dataset “A” times. 

The model's parameters are updated “A” times based on 

the error calculated on the training data. It goes through 

“A” cycles of forward and backward passes. 

 As it is mentioned, the number of epochs is a hyper 

parameter that is required to be tuned during the training 

process. Too few epochs may result in under-fitting, where 

the model hasn't learned the underlying patterns in the 

data. Too many epochs may lead to overfitting, where the 

model starts memorizing the training data and performs 

poorly on new, unseen data. During the training, the 
model's performance on a validation dataset is being 

monitored and the training is stopped when the 

performance starts to degrade, indicating that the model is 

overfitting. This is often done using early stopping 

technique. Typical effect of change of number of nodes in  

 

Fig. 6 Effect of number of nodes in a 1-layer NN on 

the number of epochs resulting minimum RMSE 

 

1-hidden layer NN is shown in Fig. 6. The optimized 

number of epochs are obtained using the early stopping 

technique. 

 Analysis of the RMSE and MAE results revealed that 

no single optimal neural network configuration emerged 

for concurrently modeling both PR and DC60. The 
preferred model (based on RMSE results) exhibited 

variability across different training runs. Figure 7 

exemplifies a typical grid search outcome for both PR and 

DC60 values. In this specific instance, the optimal NN 

configuration for PR was identified as L(1) N(512), while 

for DC60 it was L(1) N(1024). 

 Analysis of the results revealed that, for the majority 

of training runs, the optimal model configurations for both 

PR and DC60 were found among the one-layer neural 

networks. Considering the significant computational 

efficiency offered by simpler networks, the study focused 
exclusively on one-layer networks to identify the optimal 

number of nodes. This optimization process involved 10 

consecutive training runs, with the majority of cases 

converging on a configuration of 1024 nodes for both PR 

and DC60. Consequently, a one-layer neural network with 

1024 nodes, denoted as "L(1) N(1024)", is designated as 

the representative model for subsequent meta-model 

comparisons.  

 While configurations with fewer nodes, such as L(1) 

N(16), showed similar error metrics in certain training 

runs, L(1) N(512) was chosen for its consistent 

performance and robustness across multiple iterations. 
The larger capacity of L(1) N(512) allowed it to better 

capture the complex relationships in the data, particularly 

for the distortion coefficient (DC60), while maintaining 

computational efficiency. This selection was based on 

achieving a balance between model complexity and 

predictive accuracy. 

 The neural network (NN) architecture was optimized 

based on a balance between accuracy and complexity.  
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(a) (b) 

Fig. 7 Overall error (RMSE and MAE) for different NN models on PR (a) and DC60 (b) variables 

 

While increasing the number of layers could potentially 

improve accuracy, preliminary experiments with deeper 

networks showed only marginal gains in performance 

metrics (e.g., RMSE and CCC), accompanied by increased 

risk of overfitting due to the limited dataset size. The 

chosen architecture (L(1) N(512)) provided a competitive 

balance, achieving robust performance with minimal risk 

of overfitting and low computational cost. Future studies 

could explore deeper architectures in conjunction with 

larger datasets or additional regularization techniques to 

further enhance accuracy. 

In figures and charts presented throughout this study, the 
abbreviation "NN" refers specifically to the chosen "L(1) 

N(1024)" neural network configuration hereinafter. 

 Overfitting was mitigated through several measures, 

including an 80-20 train-test split, cross-validation during 

hyperparameter tuning, and regularization techniques. For 

the Random Forest Regressor (RFR), regularization was 

achieved by limiting tree depth (max_depth) and 

controlling the minimum number of samples for splits and 

leaf nodes (min_samples_split and min_samples_leaf). 

For neural networks, regularization methods such as early 

stopping, dropout (0.2), and weight decay (L2 
regularization) were employed. Input normalization 

further reduced the risk of overfitting by ensuring 

consistent variable scaling. Final model selection 

prioritized performance on the independent test set to 

ensure generalization. 

3. RESULTS AND DISCUSSION 

 The dataset used in this study was designed to capture 

a wide range of operating conditions for a fixed intake 

geometry. While it effectively represents the studied 
parameter space, it does not account for variations in 

geometry or extreme operating conditions. Consequently, 

the models, including Random Forest Regressor (RFR), 

may not generalize well to scenarios involving significant 

geometric changes. Future work could extend the dataset 

to include additional geometries and test the extrapolation 

capabilities of the models. This would provide insights 

into their robustness for more generalized applications. 

Obtained results for total pressure recovery and its 

distortion are given and explained in the following.  

3.1 Modeling Total Pressure Recovery (PR) 

Figure 8 presents a comparative assessment of the 

accuracy of various modeling techniques for predicting 

total pressure recovery (PR). It is worth to note that Figure 

7-a presents RMSE values obtained during 

hyperparameter optimization using cross-validation on the 

training dataset. These values represent relative 
performance among various configurations but are not 

directly comparable to the final RMSE values reported in 

Figure 8, which correspond to the model’s performance on 

the independent test dataset. The comparison in Figure 8 

employs a seventh-order polynomial fit as the 

representative of polynomial-based models and a one-

layer neural network with 1024 nodes as the representative 

of neural network-based models. 

  

 

Fig. 8 Overall Error (RMSE and MAE) and R2 for 

different models on pressure recovery (PR) data 
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 The 7th-order polynomial model demonstrated strong 

predictive accuracy on out-of-sample data, as indicated by 

its low RMSE and high CCC values on the test dataset. 

While the use of high-order polynomials necessitates 

careful handling to prevent overfitting, the observed 

consistency in error metrics between training and test data 
confirms the model’s ability to generalize effectively 

within the studied parameter range. 

 The Random Forest Regressor (RFR) model was 

optimized using a grid search with cross-validation. The 

hyperparameters evaluated included the number of trees 

(n_estimators), maximum tree depth (max_depth), 

minimum samples required for a split 

(min_samples_split), minimum samples required at a leaf 

node (min_samples_leaf), and the maximum features 

considered for splitting (max_features). The optimal 

configuration was determined to be 200, 20, 5, 2, and 

‘sqrt’, respectively. This configuration achieved the 

lowest RMSE on the validation dataset. 

 Among the evaluated models, Random Forest 

Regressor (RFR) emerges as the most promising, 

exhibiting a very low overall error and a high R2 value. 

Decision Tree Regressor (DTR) and seventh-order 

polynomials rank second and third, respectively, in terms 

of overall RMSE. Conversely, simple models like linear 

regression demonstrate significantly low accuracy.  

 Figure 9 presents the prediction intervals for different 

models, ranked in ascending order of RMSE based on the 

findings of Figure 8. A narrow prediction interval width 
for RFR and DTR signifies greater confidence in their 

predictions, implying that the predicted values are likely 

to fall within a smaller range. The overlap between the 

prediction intervals of these two models further suggests 

that they generate similar predictions with comparable 

uncertainty levels. Polynomial and KNN models also 

exhibit acceptable prediction intervals. Conversely, the 

wide prediction intervals associated with RBF and LR 

models indicate higher uncertainty and reduced precision 

in their predictions. The dashed 45-degree line serves as 

an indicator of the deviation between predicted and true 
values, and consequently, it can also be interpreted as a 

representation of residuals.  

 The over-prediction observed at lower values of the 

target variable in Figure 9 likely results from a 

combination of data imbalance and inherent biases in the 

models. The dataset contains fewer samples in the low-

value range, which may lead to reduced generalization in 

this region. To mitigate this bias in future work, 

resampling or weighting techniques could be applied to 

ensure better representation of lower values. Additionally, 

post-training calibration methods and custom loss 

functions may be explored to correct systematic prediction 

biases. 

 Figure 10 (a) presents various correlation coefficients 

calculated for the PR models, ranked in descending order 

of CCC. Notably, the ranking based on CCC values differs 

from the ranking based on RMSE shown in Figure 8. As 

previously noted, CCC is useful for reliability analysis. 

While most models exhibit satisfactory concordance, the 

agreement between predicted and actual PR values is 

strongest for RFR, DTR, and KNN=5 models. This 

finding also suggests potential robustness in these models, 

provided that their bias results are promising. By 

examining the SCC and KRCC values, a strong monotonic 

relationship between predicted and actual data is observed 

for RFR, DTR, and KNN=5 models. 

 Figure 10 (b) illustrates the overall bias found in 

different models. Bias is defined as the difference between 

the average of predicted values and the average of test 

values. A positive bias indicates overestimation of the 

majority of predicted values, while a negative bias 

suggests underestimation.  

 The bias trends observed in Figure 10 reveal 

systematic over-prediction in the Pressure Recovery (PR) 

model at lower values and under-prediction in the 

Distortion Coefficient (DC60) model at mid-to-high 

values. These trends likely result from the sparsity of data 
in extreme value regions and the smoothing effects of 

models such as Random Forest Regressor (RFR) and 

Neural Networks (NN). Addressing these biases in future 

studies could involve increasing data density in 

underrepresented regions, applying post-training 

calibration techniques, or employing hybrid models to 

better capture complex relationships in the data. 

 Once again, RFR exhibits the best performance in 

terms of bias, with a slight overestimation observed. The 

majority of models tend to overestimate the PR data, with 

only polynomial and RBF models showing a slight 

underestimation. 

3.2 Modeling Pressure Distortion Coefficient (DC60) 

 Figure 11 presents a comparative analysis of the 

accuracy of nine existing models for the second dependent 

variable, total pressure distortion coefficient (DC60). 

Employing Root Mean Squared Error (RMSE) as the 

primary metric, Random Forest Regressor (RFR) emerges 

as the most promising model, exhibiting exceptionally low 

overall error and a highly favorable R2 value. K-Nearest 

Neighbor (KNN) with K=5 and 7th-order polynomial 

follow in second and third positions based on overall 
RMSE. This comparison underscores the detrimental 

impact of simplifying the model to a linear nature, as 

evidenced by the reduction in both accuracy (increased 

error) and variability (lower R2).  

 The Gradient Boosting Regression (GBR) model 

exhibited suboptimal performance compared to the 

Random Forest Regressor (RFR), as shown in Fig. 11. 

This is likely due to GBR’s sensitivity to overfitting, 

particularly in sparse data regions, where its sequential 

training approach can amplify noise. While 

hyperparameter tuning was conducted, GBR’s 

performance depends strongly on parameters such as 
learning_rate and n_estimators, which may not have been 

fully optimized for this dataset. In contrast, RFR’s 

ensemble averaging reduces overfitting risks and 

enhances robustness to data heterogeneity, leading to 

superior performance in this study. 

 



H. Amiri et al. / JAFM, Vol. 18, No. 6, pp. 1364-1380, 2025.  

 

1375 

   

RFR DTR Polynomial 7th.order 

   

KNN=5 GBR NN 

   

MARS RBF LR 

Fig. 9 Prediction intervals for different models of coded PR data. Vertical red lines indicate uncertainty of 

prediction. Concordance Correlation Coefficient (CCC) is also given for each model 

 

  

(a)                                                                                 (b) 

Fig. 10 Concordance Correlation Coefficient (CCC), Kendall Tau (KRCC), and Spearman correlation coefficient 

(SCC) for different models on PR data (a) Overall bias in different models (b) 

0.4

0.6

0.8

1

R
FR

D
TR

K
N

N
=5

Po
ly

 7
th

.

G
B

R

M
A

R
S

N
N

R
B

F

LR

C
o

rr
. C

o
ef

f.

CCC KRCC SCC

-1.00E-03

-5.00E-04

0.00E+00

5.00E-04

1.00E-03

R
FR

D
TR

K
N

N
=5

P
o

ly
 7

th
.

G
B

R

M
A

R
S

N
N

R
B

F

LR

B
ia

s



H. Amiri et al. / JAFM, Vol. 18, No. 6, pp. 1364-1380, 2025.  

 

1376 

 

Fig. 11 Overall Error (RMSE and MAE) and R2 for 

different models on pressure distortion coefficient 

(DC60) data 

 

 Figure 12 presents the prediction intervals for various 

models evaluated on the DC60 data. The individual 

figures are arranged in ascending order of Root Mean 

Squared Error (RMSE), adhering to the ranking 

established in Fig. 11. Notably, Figure 12 reveals that 

Random Forest Regressor (RFR) exhibits the narrowest 

prediction intervals, signifying the highest level of 

confidence among the nine models in predicting DC60. K-
Nearest Neighbor (KNN) with K=5 and 7th-order 

polynomials demonstrate comparable levels of 

uncertainty. Additionally, the trend observed in the Linear 

Regression (LR) graph reiterates the non-linear nature of 

the data and the inadequacy of this model for accurate 

prediction. Consistent with the analysis of Pressure Ratio 

(PR) data, it is crucial to consider other metrics alongside 

prediction intervals for a comprehensive evaluation of 

model performance. 

 The consistent under-prediction observed at higher 

DC60 values in Fig. 12 likely stems from sparse data 
representation in this range and the smoothing effects of 

the models. Random Forest Regressor (RFR) and Neural 

Networks (NN) prioritize overall accuracy, often at the 

expense of extreme-value prediction. Polynomial models, 

while effective for general trends, struggle with 

extrapolation in high-value regions. Future work could 

address this limitation through targeted data 

augmentation, custom loss functions to prioritize high-

value accuracy, and post-training calibration techniques to 

adjust model predictions. 

 Figure 13(a) further corroborates the findings by 

ranking the models based on their Concordance 
Correlation Coefficient (CCC) values. Notably, RFR once 

again establishes itself as the leading model, while Linear 

Regression (LR) demonstrably presents the lowest level of 

concordance. Also presented in the figure the Spearman 

correlation coefficient (SCC) and Kendall's Tau (KRCC) 

for various models. Notably, the models exhibit a 

consistent ranking across both criteria. In terms of 

performance, Random Forest Regressor (RFR) and KNN 

with K=5 emerge as the frontrunners. Furthermore, it is 

noteworthy that the desired parametric polynomial model 
also demonstrates satisfactory performance on the DC60 

data.  

 Figure 13(b) reveals that despite the relatively small 

absolute value of bias error, most models underestimate 

the predicted DC60 values. This observation stands in 

contrast to the tendency of most meta-models to 

overestimate the PR variable, as illustrated in Figure 

10(b). Notably, Decision Tree Regression (DTR) exhibits 

the smallest bias error for DC60, while Neural Networks 

(NN) produce the largest bias. However, the training time 

for NNs was twice that required by other models.  

 The 7th-degree polynomial model demonstrated 
strong predictive capabilities, achieving a CCC of 0.9378 

and an RMSE comparable to more complex machine 

learning models. While Random Forest Regressor (RFR) 

displayed marginally better overall performance, the 7th-

degree polynomial emerged as a competitive and 

interpretable parametric alternative, especially in 

applications favoring explicit mathematical representation 

of the relationships. 

4. CONCLUSION 

This study conducted a comprehensive investigation 

into the performance of various surrogate (or meta) 

modeling techniques for predicting two key aerodynamic 

parameters in an air intake system: total pressure recovery 

(PR) and total pressure distortion coefficient (DC60). A 

diverse range of models, encompassing both traditional 

and advanced machine learning algorithms, were 

evaluated using a rigorous set of metrics, including 

accuracy, reliability, robustness, bias, and computational 

efficiency. Findings of this study are pointed below.  

 The study identified Random Forest Regressor (RFR) 
as the most effective model for PR prediction, 

outperforming others across all metrics considered, 

including RMSE, R2, CCC, SCC, KRCC, and bias. While 

RMSE provided valuable insight into overall accuracy, 

relying solely on this metric proved insufficient.  

 RFR exhibited marginal improvement in performance 

in terms of bias and concordance metrics, emphasizing  

the need for multi-faceted evaluation. Simple models like 

linear regression demonstrated limited effectiveness for 

PR prediction due to their inability to capture the non-

linear relationships in the data. In contrast, the 7th-degree 

polynomial, a higher-order parametric approach, achieved 
competitive results, including a CCC of 0.9378, low 

RMSE (~0.5%), and minimal bias. These results highlight 

the suitability of higher-order parametric models for 

certain applications, even when compared with more 

advanced machine learning techniques. The majority of 

models exhibited a tendency to overestimate PR values, 

suggesting the need for further investigation and potential 

bias mitigation strategies. 
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Fig. 12 Prediction intervals for different models of coded DC60 data. Vertical red lines indicate uncertainty of 

prediction. Concordance Correlation Coefficient (CCC) is also given for each model 
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 RFR maintained its marginal leadership for DC60 

prediction, showcasing exceptionally low error and high 

R2, underscoring its versatility. KNN with K=5 and 7th-

order polynomials emerged as promising alternatives, 

demonstrating satisfactory performance in terms of 

accuracy and uncertainty quantification. As with PR, 
linear regression proved inadequate for DC60 prediction 

due to its inability to capture the complex non-linear 

relationships within the data. Contrary to the 

overestimation observed in PR, most models 

underestimated DC60 values, highlighting the need for 

model-specific bias analysis. While Neural Networks 

displayed promising DC60 prediction capabilities, their 

significantly longer training time compared to other 

models necessitates careful consideration. The 7th-order 

polynomial model demonstrated superior performance 

compared to other parametric models, showcasing the 

effectiveness of carefully chosen polynomial models for 

specific applications. 

 Analyzing findings for both PR and DC60 reveals that 

RFR exhibits remarkable performance across both 

parameters, establishing itself as a versatile and robust 

choice. Model selection should be based on 

comprehensive evaluation utilizing multiple metrics, 

avoiding reliance solely on accuracy measures. 

Traditional models like linear regression have limited 

applicability in complex engineering domains where non-

linear relationships dominate. Understanding and 

addressing bias tendencies for individual models is crucial 
for ensuring reliable predictions. Computational 

efficiency remains a critical factor, requiring a balance 

between model performance and training time. 

 Future research efforts should focus on exploring 

alternative advanced machine learning algorithms for 

further performance enhancements, incorporating 

uncertainty quantification techniques to assess prediction 

confidence intervals, investigating the impact of feature 

engineering and selection on model performance, 

exploring ensemble learning and transfer learning 

approaches for improved generalizability and 
performance across different domains, and adapting 

existing models to incorporate domain-specific 

knowledge and constraints for even more accurate and 

reliable predictions. 

ACKNOWLEDGEMENTS 

 The authors would like to acknowledge Turkish 

Aerospace Industries (TUSAŞ) for providing the 

necessary resources including access to databases. 

CONFLICT OF INTEREST 

Authors declare that they have no conflicts to 

disclose. 

AUTHORS CONTRIBUTION 

Human Amiri: Conceptualization, methodology, 

formal analysis, writing, and editing of the original draft. 

Umut Can Kucuk: Analysis, Manuscript revision. Onur 

Kucukoglu: Experimental campaign. Yigit Firat Kuscu: 

Experimental campaign. Osman Veysel Ozdemir: 

Manuscript revision. 

DECLARATION OF GENERATIVE AI AND AI-

ASSISTED TECHNOLOGIES IN THE WRITING 

PROCESS 

During the preparation of this work, the author(s) 

engaged the assistance of ChatGPT, an AI language model 

developed by OpenAI, to enhance the clarity and 

correctness of the content. ChatGPT was employed for 

grammatical correction and refinement of the writing. 
After using this tool/service, the author(s) reviewed and 

edited the content as needed and take(s) full responsibility 

for the content of the publication.  

REFERENCES  

Altman, N. S. (1992). An introduction to kernel and 

nearest-neighbor nonparametric regression. The 

American Statistician, 46(3), 175. 

https://doi.org/10.2307/2685209 

Askari, R., & Soltani, M. R. (2020). Flow asymmetry in a 
Y-Shaped diverterless supersonic inlet: A novel 

finding. AIAA Journal, 58(6), 2609–2620. 

https://doi.org/10.2514/1.J059006 

Aziz, N., Akhir, E. A. P., Aziz, I. A., Jaafar, J., Hasan, M. 

H., & Abas, A. N. C. (2020). A study on gradient 

boosting algorithms for development of AI 

monitoring and prediction systems. 2020 

International Conference on Computational 

Intelligence (ICCI), 11–16. 

https://doi.org/10.1109/ICCI51257.2020.9247843 

Box, G. E. P., & Draper, N. R. (1987). Empirical model-

building and response surfaces. Wiley. 

Chen, V. C. P., Tsui, K.  L., Barton, R. R., & 

Meckesheimer, M. (2006). A review on design, 

modeling and applications of computer experiments. 

IIE Transactions, 38(4), 273–291. 

https://doi.org/10.1080/07408170500232495 

Drężek, P. S., Kubacki, S., & Żółtak, J. (2022). Multi-

objective surrogate model-based optimization of a 

small aircraft engine air-intake duct. Proceedings of 

the Institution of Mechanical Engineers, Part G: 

Journal of Aerospace Engineering, 236(14), 2909–

2921. https://doi.org/10.1177/09544100211070868 

Erickson, C. B. (2019). Adaptive computer experiments 

for metamodeling. Northwestern University. 

El-Sayed, A. F. (2016). Aero-engines intake: A review and 

case study. Journal of Robotics and Mechanical 

Engineering Research, 1(3), 35–42. 

https://doi.org/10.24218/jrmer.2016.15 

Forrester, A. I. J., Sóbester, A., & Keane, A. J. (2008). 

Engineering design via surrogate modelling: A 

practical guide (1st ed.). Wiley. 

https://doi.org/10.1002/9780470770801 

Friedman, J. H. (1991). Multivariate adaptive regression 

splines. The Annals of Statistics, 19(1). 

https://doi.org/10.2307/2685209
https://doi.org/10.2514/1.J059006
https://doi.org/10.1109/ICCI51257.2020.9247843
https://doi.org/10.1080/07408170500232495
https://doi.org/10.1177/09544100211070868
https://doi.org/10.24218/jrmer.2016.15
https://doi.org/10.1002/9780470770801


H. Amiri et al. / JAFM, Vol. 18, No. 6, pp. 1364-1380, 2025.  

 

1379 

https://doi.org/10.1214/aos/1176347963 

Friedman, L. W., & Pressman, I. (1988). The metamodel 

in simulation analysis: can it be trusted? The Journal 

of the Operational Research Society, 39(10), 939. 

https://doi.org/10.2307/2583045 

Gabriel Pereira Gouveia da Silva, F. M. C. (2019). Neural 
network metamodeling for aerodynamic 

optimization efficiency improvement. IV Simpósio 

do Programa de Pós-Graduação em Engenharia 

Mecânica da EESC-USP (SiPGEM/EESC-USP). 

Jena, M., & Dehuri, S. (2020). Decision tree for 

classification and regression: a state-of-the art 

review. Informatica, 44(4). 

https://doi.org/10.31449/inf.v44i4.3023 

Kianifar, M. R., & Campean, F. (2020). Performance 

evaluation of metamodelling methods for 

engineering problems: Towards a practitioner guide. 

Structural and Multidisciplinary Optimization, 
61(1), 159–186. https://doi.org/10.1007/s00158-

019-02352-1 

Kim, H., Loh, W. Y., Shih, Y. S., & Chaudhuri, P. (2007). 

Visualizable and interpretable regression models 

with good prediction power. IIE Transactions, 39(6), 

565–579. 

https://doi.org/10.1080/07408170600897502 

Kleijnen, J. P. C. (2009). Kriging metamodeling in 

simulation: A review. European Journal of 

Operational Research, 192(3), 707–716. 

https://doi.org/10.1016/j.ejor.2007.10.013 

Kleijnen, J. P. C. (2017). Regression and kriging 

metamodels with their experimental designs in 

simulation: A review. European Journal of 

Operational Research, 256(1), 1–16. 

https://doi.org/10.1016/j.ejor.2016.06.041 

Kyprioti, A. P., Zhang, J., & Taflanidis, A. A. (2020). 

Adaptive design of experiments for global Kriging 

metamodeling through cross-validation information. 

Structural and Multidisciplinary Optimization, 

62(3), 1135–1157. https://doi.org/10.1007/s00158-

020-02543-1 

Le Clainche, S., Ferrer, E., Gibson, S., Cross, E., Parente, 

A., & Vinuesa, R. (2023). Improving aircraft 

performance using machine learning: A review. 

Aerospace Science and Technology, 138, 108354. 

https://doi.org/10.1016/j.ast.2023.108354 

Li, J., Du, X., & Martins, J. R. R. A. (2022). Machine 

learning in aerodynamic shape optimization. 

Progress in Aerospace Sciences, 134, 100849. 

https://doi.org/10.1016/j.paerosci.2022.100849 

Li, Y. F., Ng, S. H., Xie, M., & Goh, T. N. (2010). A 

systematic comparison of metamodeling techniques 

for simulation optimization in decision support 
systems. Applied Soft Computing, 10(4), 1257–1273. 

https://doi.org/10.1016/j.asoc.2009.11.034 

Morris, M. D., & Mitchell, T. J. (1995). Exploratory 

designs for computational experiments. Journal of 

Statistical Planning and Inference, 43(3), 381–402. 

https://doi.org/10.1016/0378-3758(94)00035-T 

Patel, T., Singh, S. N., & Seshadri, V. (2005). 

Characteristics of Y-Shaped rectangular diffusing 

duct at different inflow conditions. Journal of 

Aircraft, 42(1), 113–120. 

https://doi.org/10.2514/1.4690 

Pearson, K. (1895). Note on regression and inheritance in 

the case of two parents. Proceedings of the Royal 

Society of London Series I, 58, 240–242. 

Poggi, C., Rossetti, M., Serafini, J., Bernardini, G., 

Gennaretti, M., & Iemma, U. (2022). Neural network 

meta–modelling for an efficient prediction of 

propeller array acoustic signature. Aerospace 

Science and Technology, 130, 107910. 

https://doi.org/10.1016/j.ast.2022.107910 

Schneider, A., Hommel, G., & Blettner, M. (2010). Linear 

regression analysis. Deutsches Ärzteblatt 

International. 

https://doi.org/10.3238/arztebl.2010.0776 

Seddon, J., & Goldsmith, E. L. (1999). Intake 

Aerodynamics. 2nd ed., AIAA Education Series, 

American Institute of Aeronautics and Astronautics. 

Simpson, T. W., Poplinski, J. D., Koch, P. N., & Allen, J. 

K. (2001). Metamodels for computer-based 

engineering design: Survey and recommendations. 

Engineering with Computers, 17(2), 129–150. 

https://doi.org/10.1007/PL00007198 

Singh, U., Rizwan, M., Alaraj, M., & Alsaidan, I. (2021). 

A machine learning-based gradient boosting 
regression approach for wind power production 

forecasting: A step towards smart grid environments. 

Energies, 14(16), 5196. 

https://doi.org/10.3390/en14165196 

Sun, G., & Wang, S. (2019). A review of the artificial 

neural network surrogate modeling in aerodynamic 

design. Proceedings of the Institution of Mechanical 

Engineers, Part G: Journal of Aerospace 

Engineering, 233(16), 5863–5872. 

https://doi.org/10.1177/0954410019864485 

Van Gelder, L., Das, P., Janssen, H., & Roels, S. (2014). 
Comparative study of metamodelling techniques in 

building energy simulation: Guidelines for 

practitioners. Simulation Modelling Practice and 

Theory, 49, 245–257. 

https://doi.org/10.1016/j.simpat.2014.10.004 

Wang, H., Shan, S., Wang, G. G., & Li, G. (2011). 

Integrating least square support vector regression 

and mode pursuing sampling optimization for 

crashworthiness design. Journal of Mechanical 

Design, 133(4), 041002. 

https://doi.org/10.1115/1.4003840 

Wang, L., Misra, G., & Bai, X. (2019). A K nearest 
neighborhood-based wind estimation for rotary-

wing VTOL UAVs. Drones, 3(2), 31. 

https://doi.org/10.3390/drones3020031 

Wu, H., Zhao, Y. P., & Hui-Jun, T. (2022). A hybrid of 

fast K-nearest neighbor and improved directed 

https://doi.org/10.1214/aos/1176347963
https://doi.org/10.2307/2583045
https://doi.org/10.31449/inf.v44i4.3023
https://doi.org/10.1007/s00158-019-02352-1
https://doi.org/10.1007/s00158-019-02352-1
https://doi.org/10.1080/07408170600897502
https://doi.org/10.1016/j.ejor.2007.10.013
https://doi.org/10.1016/j.ejor.2016.06.041
https://doi.org/10.1007/s00158-020-02543-1
https://doi.org/10.1007/s00158-020-02543-1
https://doi.org/10.1016/j.ast.2023.108354
https://doi.org/10.1016/j.paerosci.2022.100849
https://doi.org/10.1016/j.asoc.2009.11.034
https://doi.org/10.1016/0378-3758(94)00035-T
https://doi.org/10.2514/1.4690
https://doi.org/10.1016/j.ast.2022.107910
https://doi.org/10.3238/arztebl.2010.0776
https://doi.org/10.1007/PL00007198
https://doi.org/10.3390/en14165196
https://doi.org/10.1177/0954410019864485
https://doi.org/10.1016/j.simpat.2014.10.004
https://doi.org/10.1115/1.4003840
https://doi.org/10.3390/drones3020031


H. Amiri et al. / JAFM, Vol. 18, No. 6, pp. 1364-1380, 2025.  

 

1380 

acyclic graph support vector machine for large-scale 

supersonic inlet flow pattern recognition. 

Proceedings of the Institution of Mechanical 

Engineers, Part G: Journal of Aerospace 

Engineering, 236(1), 109–122. 

https://doi.org/10.1177/09544100211008601 

Yan, Q., Wan, Z., & Yang, C. (2023). Flight load 

calculation using neural network residual kriging. 

Aerospace, 10(7), 599. 

https://doi.org/10.3390/aerospace10070599 

Yang, R. J., Gu, L., Liaw, L., Gearhart, C., Tho, C. H., 

Liu, X., & Wang, B. P. (2000). Approximations for 

safety optimization of large systems. 26th Design 

Automation Conference, 763–772. 

https://doi.org/10.1115/DETC2000/DAC-14245 

Yang, T., Zhiyong, L., Neng, X., Yan, S., & Jun, L. 

(2018). Optimization of positional parameters of 

close-formation flight for blended-wing-body 

configuration. Heliyon, 4(12), e01019. 

https://doi.org/10.1016/j.heliyon.2018.e01019 

Zan, B. W., Han, Z. H., Xu, C. Z., Liu, M. Q., & Wang, 

W. Z. (2022). High-dimensional aerodynamic data 

modeling using a machine learning method based on 

a convolutional neural network. Advances in 

Aerodynamics, 4(1), 39. 

https://doi.org/10.1186/s42774-022-00128-8 

 

https://doi.org/10.1177/09544100211008601
https://doi.org/10.3390/aerospace10070599
https://doi.org/10.1115/DETC2000/DAC-14245
https://doi.org/10.1016/j.heliyon.2018.e01019
https://doi.org/10.1186/s42774-022-00128-8

