Research on Axisymmetric Vectoring Exhaust Nozzle Dynamic Characteristics Considering Aerodynamic and Thermal Loads Effect

Document Type : Regular Article

Authors

1 School of Mechanical Engineering & Automation, Northeastern University, Shenyang, Liaoning, 110819, China

2 Key Laboratory of Vibration and Control of Aero-Propulsion System, Northeastern University, Shenyang, Liaoning, 110819, China

3 Foshan Graduate School of Innovation, Northeastern University, Foshan, Guangdong, 528312, China

4 AECC Shenyang Engine Research Institute, Shenyang, Liaoning, 110015, China

Abstract

The Axisymmetric Vectoring Exhaust Nozzle (AVEN) has been extensively studied in thrust vectoring technology due to its ability to achieve 360° vector deflection. A key observation is that thermal loads are closely linked to joint clearance, which introduces significant complexity and unpredictability to the system’s dynamic response. This paper investigates the impact of thermal loads on joint forces using a finite element model. A fluid field analysis method was developed based on the operational conditions of the AVEN. The inner wall temperature obtained from this fluid analysis was then used as a boundary condition in the structural thermal analysis model. The results indicate that, for the relative angle of the joint, the combined aerodynamic and thermal loads contribute to the total aerodynamic-thermal interaction effects. Furthermore, structural stress in the steering control ring segment is primarily influenced by aerodynamic loads, while the convergence regulator ring segment is mainly affected by thermal loads.

Keywords

Main Subjects


Alimohammadi, H. R., & Aghaei-Togh, R. (2023). Multi-objective multidisciplinary design optimization of liquid-propellant engines thrust chamber based on a surrogate model. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(14), 3215-3229. https://doi.org/10.1177/09544100231182268
Back, L. H., Massier, P. F., & Gier, H. L. (1964). Convective heat transfer in a convergent-divergent nozzle. International Journal of Heat and Mass Transfer, 7(05), 549-568. https://doi.org/10.1016/0017-9310(64)90052-3
Bahamon, J., & Martinez, M. (2023). Study of fluid-dynamic behavior in a convergent–divergent nozzle by shape optimization using evolutionary strategies algorithms. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(12), 2844-2862. https://doi.org/10.1177/09544100231163372
Chen, F., Liu, H., & Zhang, S. T. (2018). Time-adaptive loosely coupled analysis on fluid-thermal-structural behaviors of hypersonic wing structures under sustained aeroheating. Aerospace Science and Technology, 78, 620-636. https://doi.org/10.1016/j.ast.2018.05.015
Chen, H. C., & Patel, V. C. (1988). Near-Wall turbulence models for complex flows including separation. AIAA Journal, 26, 641-648. https://doi.org/10.2514/3.9948
Cheng, Y., Hu, R., & Wu, J. (2023). Pipeline fault simulation and control of a liquid rocket engine. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(12), 2700-2719. https://doi.org/10.1177/09544100231157139
Christophe, B. (2018). Turbulence. National Defense Industry Press.
Edathol, J., Brezgin, D., Aronson, K., & Kim, H. D. (2020). Prediction of non-equilibrium homogeneous condensation in supersonic nozzle flows using Eulerian-Eulerian models. International Journal of Heat and Mass Transfer, 152, 119451. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119451
Gao, H., Zhai, J. Y., Zhang, H., Han, Q. K., & Liu, J. G. (2021). Dynamic investigation of a spatial multi-body mechanism considering joint clearance and friction based on coordinate partitioning method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(24), 7569-7587. https://doi.org/10.1177/095440622110255664
Gao, Y. G., Liu, Y., & Ma, D. (2022). Effect of operation pressure on heat release characteristics in solid rocket motor nozzle considering detailed chemical reaction mechanism. Aerospace Science and Technology, 128, 107794. https://doi.org/10.1016/j.ast.2022.10779411
Jongen, T. (1992). Simulation and modeling of turbulent incompressible flows. Dissertation, EPF Lausanne.
Kowollik, D., Tini, V., Reese, S., & Haupt, M. (2013). 3D fluid-structure interaction analysis of a typical liquid rocket engine cycle based on a novel viscoplastic damage model. International Journal for Numerical Methods in Engineering, 94(13), 1165-1190. https://doi.org/10.1002/nme.4488
Li, F. S. (2009). Backward solutions to Neumann and Dirichlet problems of heat-conduction equation. Applied Mathematics and Computation, 210(1), 211-214. https://doi.org/10.1016/j.amc.2008.12.077
Li, H. W., Gao, Y. F., Du, C. H., & Hong, W. P. (2021). Numerical study on swirl cooling flow, heat transfer and stress characteristics based on fluid-structure coupling method under different swirl chamber heights and Reynolds numbers. International Journal of Heat and Mass Transfer, 173, 121228. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121228
Li, W. H., Liu, T. H., Zhang, J., Chen, Z. W., Chen, X. D., & Xie, T. Z. (2017). Aerodynamic study of two opposing moving trains in a tunnel based on different nose contours. Journal of Applied Fluid Mechanics, 10(5), 1375-1386. https://doi.org/10.18869/acadpub.jafm.73.242.27738
Li, Y. T., & Wang, Y. X. (2014). Eliminating singularity of a parallel driving mechanism of axisymmetric vectoring exhaust nozzle. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 228(12), 2300-2309. https://doi.org/10.1177/09544100135151115
Lijo, V., Kim, H. D., Rajesh, G., & Setoguchi, T. (2010a). Numerical simulation of transient flows in a vacuum ejector-diffuser system. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 224(7), 777-786. https://doi.org/10.1243/09544100JAERO680
Lijo, V., Kim, H. D., Setoguchi, T., Toshiaki, S., & Shigeru, M. (2010b). Numerical simulation of transient flows in a rocket propulsion nozzle. International Journal of Heat and Fluid Flow, 31(3), 409-417. https://doi.org/10.1016/j.ijheatfluidflow.2009.12.005
Liu, Q. Y., Luke, E. A., & Cinnella, P. (2005). Coupling heat transfer and fluid flow solvers for multidisciplinary simulations. Journal of Thermophysics and Heat Transfer, 19(4), 417-427. https://doi.org/10.2514/1.1352212
Liu, Y., Wang, H. F., Ma, D., Gao, Y. G., & Zhao, W. (2022). Numerical investigation of surface roughness effects on non-equilibrium flow in expansion section of rocket nozzle. Aerospace Science and Technology, 124, 107523. https://doi.org/10.1016/j.ast.2022.1075239
Luo, Z., Song, Y. H., Ge, C. C., & Xu, C. Y. (2021). Fluid-solid-thermal coupling characteristics of ejector valve adjusting structure. Journal of Northeastern University (Natural Science), 42(1), 75-82. (in Chinese) https://doi.org/10.12068/j.issn.1005-3026.2021.01.012
Nie, X., Zhu, Z. H., Liao, H. B., Zhang, Y. Z., & Xu, J. R. (2022). A Comparative study of the buoyancy-opposed wall jet using different turbulent models. Journal of Applied Fluid Mechanics, 15(1), 85-98. https://doi.org/10.47176/jafm.15.0.32762
Pizzarelli, M., Cegan, A., Battista, F., & Nasuti, F. (2024). Application of semiempirical correlations for multidimensional heat transfer in rocket engine cooling channels. Applied Thermal Engineering, 254(1), 123816. https://doi.org/10.1016/j.applthermaleng.2024.123816
Pizzarelli, M., Nasuti, F., & Onofri, M. (2014). Effect of cooling channel aspect ratio on rocket thermal behavior. Journal of Thermophysics and Heat Transfer, 28(3), 410-416. https://doi.org/10.2514/1.T429915
Pizzarelli, M., Nasuti, F., Paciorri, R., & Onofris, M. (2009). Numerical analysis of three-dimensional flow of supercritical fluid in cooling channels. AIAA Journal, 47, 2534-2543. https://doi.org/10.2514/1.3854214
Rogowski, K., Hansen, M. O. L., & Lichota P. (2018). 2-D CFD Computations of the Two-Bladed Darrieus-Type Wind Turbine. Journal of Applied Fluid Mechanics, 11(4), 835-845. https://doi.org/10.29252/jafm.11.04.28383
Schlichting, H., & Gersten, K. (2017). Boundary-layer theory. Springer-Verlag. https://link.springer.com/book/10.1007/978-3-662-52919-5
Tahani, M., & Moradi, M. (2016). Aerodynamic investigation of a wind turbine using CFD and modified BEM methods. Journal of Applied Fluid Mechanics, 9(1), 107-111. https://doi.org/10.36884/jafm.9.SI1.25820
Wang, H. P., Zhang, Y. B., & Yang, M. (2011). Flexible multi-body dynamics simulation of cold state axial-symmetric vectoring exhaust nozzle. Journal of Aerospace Power, 26(11), 2427-2432. https://doi.org/10.13224/j.cnki.jasp.2011.11.0243
Wang, Y. S., Xu, J. L., Huang, S., Lin, Y. C., & Jiang, J. J. (2019). Computational study of axisymmetric divergent bypass dual throat nozzle. Aerospace Science and Technology, 86, 177-190. https://doi.org/10.1016/j.ast.2018.11.05910
Wang, Y. X. (2006). Axial-Symmetric Vectoring Exhaust Nozzle for Jet-Thrust-Aircraft. National Defense Industry Press.
Wolfshtein, M. (1969). The velocity and temperature distribution of one-dimensional flow with turbulence augmentation and pressure gradient. International Journal of Heat and Mass Transfer, 12, 301-318. https://doi.org/10.1016/0017-9310(69)90012-X
Xiang, J. X., & Sun, B. (2018). Research on coupled heat transfer of film cooling in LOX/GH2 thrust chambers. Journal of Thermal Science and Technology, 13(2), T35. https://doi.org/10.1299/jtst.2018jtst0035
Xiang, J. X., Sun, B., Wang, T. P., & Yuan, J. Y. (2020). Effects of angled film-cooling on cooling performance in a GO2/GH2 subscale thrust chamber. Applied Thermal Engineering, 166, 114627. https://doi.org/10.1016/j.applthermaleng.2019.114627
Yan, M. G. (2002). China aviation materials handbook. Standards Press of China.
Yao, S. B., Luo, Z., Wei, K., Sun, Y. H., & Xu, C. Y. (2022). Analysis of fluid-solid-thermal coupling characteristics of axial-symmetric vectoring exhaust nozzle. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(17), 9472-9484. https://doi.org/10.1177/095440622210979118
Zhang, H., Wu, Q., Hao, Z., Meng, L., Luo, Z., Han, Q. (2024). Analysis of the dynamic of vector nozzle adjustment mechanism considering the effect of joint clearance. Journal of Vibration Engineering & Technologies, 12, 6137-6154. https://doi.org/10.1007/s42417-023-01243-6
Zhang, Q., & Hisada, T. (2004). Studies of the strong coupling and weak coupling methods in FSI analysis. International Journal for Numerical Methods in Engineering, 60(12), 2013–2029. https://doi.org/10.1002/nme.1034
Zhou, D., Lu, Z. L., Guo, T. Q., Shen, E. N., Wu, J. P., & Chen, G. P. (2020). Fluid-thermal modeling of hypersonic vehicles via a gas-kinetic BGK scheme-based integrated algorithm. Aerospace Science and Technology, 99, 105748. https://doi.org/10.1016/j.ast.2020.105748
Zhou, S., Gao, H., Xu, C., Jia, Z., Lin, J., Han, Q., Luo, Z. (2022) Kinematic modeling and stiffness analysis of a 3-DOF 3SPS+3PRS parallel manipulator. Mathematics, 10(23), 4465. https://doi.org/10.3390/math10234465