Three-dimensional Simulation of Wet Combustion of Hydrogen-methane Mixture in the Annular Combustion Chamber of a Microturbine

Document Type : Regular Article

Authors

Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran,1983969411, Iran

Abstract

This study presents a three-dimensional simulation of wet combustion in the annular combustion chamber of a C30 microturbine using a hydrogen-methane fuel mixture. The research aims to minimize exhaust emissions, including nitrogen oxides (NOx) and carbon monoxide (CO), and reduce fuel consumption. A partially premixed combustion model has been utilized to accurately simulate the combustion process within the chamber. The impact of steam addition (wet combustion) is also analyzed. The simulation employs the k-ε Realizable turbulence model and probability density function (PDF) for chemical reactions. The fuel mixture is adjusted by adding hydrogen in increments of 10%, resulting in a final composition of 40% hydrogen and 60% methane. With hydrogen’s high heating value, the chamber temperature reaches 2376 K, significantly increasing NOx and CO emissions. To control the temperature and maintain turbine operating conditions, the fuel mass flow rate is reduced by 35%, ensuring a consistent turbine inlet temperature. At this temperature, CO and CO2 emissions decrease by 16% and 61%, respectively, while NOx emissions increase due to hydrogen’s flame characteristics. The introduction of humidity levels of 2.5%, 5%, 7.5%, and 10% in the inlet air reduces NOx emissions by 68% in the case where the fuel mixture contains 10% hydrogen, with this reduction occurring at 10% humidity. Additionally, a 48% reduction in CO emissions was observed when the fuel mixture contained 40% hydrogen, and this reduction also occurred at 10% humidity. Wet combustion also enhances temperature uniformity in the chamber. These findings highlight the potential of hydrogen-methane mixtures with wet combustion to enable low-emission, efficient microturbines, supporting sustainable energy goals.

Keywords

Main Subjects


Abagnale, C., Cameretti, M. C., De Robbio, R., & Tuccillo, R. (2017). Thermal cycle and combustion analysis of a solar-assisted micro gas turbine. Energies, 10(6), 773. https://doi.org/10.3390/en10060773
Adamou, A., Costall, A., Turner, J. W., Jones, A., & Copeland, C. (2023). Experimental performance and emissions of additively manufactured high-temperature combustion chambers for micro-gas turbines. International Journal of Engine Research, 24(4), 1273-1289. https://doi.org/10.1177/14680874221082636
Banerjee, A., Sarkar, S., Mukhopadhyay, A., & Sen, S. (2021). The effects of steam and water spray addition on NOx emissions from a combustor using simple reactor models. Conference on Fluid Mechanics and Fluid Power. https://doi.org/10.1007/978-981-19-6970-6_87
Bastani, M., Tabejamaat, S., Mani, M., & Ashini, H. (2025). Numerical and experimental investigation of microturbine combustion chamber performance and emissions through biogas consumption with varied component ratios. Fuel, 380, 133234. https://doi.org/10.1016/j.fuel.2024.133234
Bolszo, C., & McDonell, V. (2009). Emissions optimization of a biodiesel fired gas turbine. Proceedings of the Combustion Institute, 32(2), 2949-2956. https://doi.org/ 10.1016/j.proci.2008.07.042
Bouam, A., Aissani, S., & Kadi, R. (2008). Combustion chamber steam injection for gas turbine performance improvement during high ambient temperature operations. https://doi.org/10.1115/1.2898834
Bulat P., V., Vokin Leonid, O., Konstantin, N. V., Nikitenko Alexander, B., Prodan Nikolai, V., & Maksim, E. R. (2024a). Configurable combustion models of combustion chamber of microturbine engine with possibility of connecting various physico-chemical processes. Journal Scientific and Technical Of Information Technologies, Mechanics and Optics, 156(4), 645. https://doi.org/ 10.17586/2226-1494-2024-24-4-645-653
Bulat, P., Vokin, L., Volkov, K., Nikitenko, A., Prodan, N., & Renev, M. (2024b). Numerical simulation of performance of micro gas turbine engine combustion chamber taking into account oil addition to fuel. Russian Aeronautics, 67(3), 594-600. https://doi.org/ 10.3103/S1068799824030140
Caldeira-Pires, A., Heitor, M., & Carvalho Jr, J. (2000). Characteristics of nitric oxide formation rates in turbulent nonpremixed jet flames. Combustion and Flame, 120(3), 383-391. https://doi.org/10.1016/S0010-2180(99)00094-2
Cameretti, M. C. (2020). Modelling of a hybrid solar micro-gas turbine fuelled by biomass from agriculture product. Energy Reports, 6, 105-116. https://doi.org/10.1016/j.egyr.2019.10.026
Carusotto, S., Goel, P., Baratta, M., Misul, D. A., Salvadori, S., Cardile, F., Forno, L., Toppino, M., & Valsania, M. (2022). Combustion characterization in a diffusive gas turbine burner for hydrogen-compliant applications. Energies, 15(11), 4117. https://doi.org/10.3390/en15114117
Chen, J., Mitchell, M. G., & Nourse, J. G. (2009). Development of ultra-low emission liquid fuel-fired microturbine engines for vehicular heavy duty applications. Turbo Expo: Power for Land, Sea, and Air.  https://doi.org/10.1115/GT2009-60257
Chen, J., Mitchell, M. G., & Nourse, J. G. (2010). Development of ultra-low emission diesel fuel-fired microturbine engines for vehicular heavy duty applications: combustion modifications. Turbo Expo: Power for Land, Sea, and Air,  https://doi.org/10.1115/GT2010-23181
Chen, S., Zhao, D., Li, H. K. H., Ng, T. Y., & Jin, X. (2017). Numerical study of dynamic response of a jet diffusion flame to standing waves in a longitudinal tube. Applied Thermal Engineering, 112, 1070-1082. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2016.10.152
De Robbio, R. (2017). Innovative combustion analysis of a micro-gas turbine burner supplied with hydrogen-natural gas mixtures. Energy Procedia, 126, 858-866. https://doi.org/10.1016/j.egypro.2017.08.291
De Soete, G. G. (1975). Overall reaction rates of NO and N2 formation from fuel nitrogen. Symposium (international) on combustion.  https://doi.org/10.1016/S0082-0784(75)80374-2
Di Nardo, A., Bo, A., Calchetti, G., Giacomazzi, E., & Messina, G. (2020). Study on the fuel flexibility of a microgas turbine combustor burning different mixtures of H2, CH4, and CO2. Journal of Engineering for Gas Turbines and Power, 142(6), 061001. https://doi.org/10.1115/1.4046706
Du Toit, M., Engelbrecht, N., Oelofse, S. P., & Bessarabov, D. (2020). Performance evaluation and emissions reduction of a micro gas turbine via the co-combustion of H2/CH4/CO2 fuel blends. Sustainable Energy Technologies and Assessments, 39, 100718. https://doi.org/10.1016/j.seta.2020.100718
Fąfara, J. M. (2025). CFD study case of ammonia-hydrogen mixture powered methane gas microturbine combustor in the context of the temperature repartition modifications. Combustion Engines. https://doi.org/ttps://doi.org/10.19206/CE-197220
Fantozzi, F., Laranci, P., Bianchi, M., De Pascale, A., Pinelli, M., & Cadorin, M. (2009). CFD simulation of a microturbine annular combustion chamber fuelled with methane and biomass pyrolysis syngas: Preliminary results. Turbo Expo: Power for Land, Sea, and Air.  https://doi.org/10.1115/GT2009-60030
Farokhipour, A., Hamidpour, E., & Amani, E. (2018). A numerical study of NOx reduction by water spray injection in gas turbine combustion chambers. Fuel, 212, 173-186. https://doi.org/10.1016/j.fuel.2017.10.033
Fatehi, M., Campaldini, G., & Renzi, M. (2025). Micro gas turbine fed by ammonia with steam injection: Performance and combustion analysis. Applied Thermal Engineering, 125428. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2025.125428
Fluent, A. (2011). Ansys fluent theory guide. Ansys Inc., USA, 15317, 724-746.
Funke, H. W., Beckmann, N., & Abanteriba, S. (2019). An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications. International Journal of Hydrogen Energy, 44(13), 6978-6990. https://doi.org/10.1016/j.ijhydene.2019.01.161
Furuhata, T., Kawata, T., Mizukoshi, N., & Arai, M. (2010). Effect of steam addition pathways on NO reduction characteristics in a can-type spray combustor. Fuel, 89(10), 3119-3126. https://doi.org/10.1016/j.fuel.2010.05.018
Glanville, P., Fridlyand, A., Sutherland, B., Liszka, M., Zhao, Y., Bingham, L., & Jorgensen, K. (2022). Impact of hydrogen/natural gas blends on partially premixed combustion equipment: NOx emission and operational performance. Energies, 15(5), 1706. https://doi.org/https://doi.org/10.3390/en15051706
Haynes, J., Janssen, J., Russell, C., & Huffman, M. (2006). Advanced combustion systems for next generation gas turbines. https://doi.org/10.2172/888744
Jamshidiha, M., Kamal, M., Cafiero, M., Coussement, A., & Parente, A. (2024). Experimental and numerical characterization of hydrogen combustion in a reverse-flow micro gas turbine combustor. International Journal of Hydrogen Energy, 55, 1299-1311. https://doi.org/https://doi.org/10.1016/j.ijhydene.2023.11.243
Khosravy el_Hossaini, M. (2013). Review of the new combustion technologies in modern gas turbines. Progress in Gas Turbine Performance, 978-953. https://doi.org/10.5772/54403
Lefebvre, A. H., & Ballal, D. R. (2010). Gas turbine combustion: alternative fuels and emissions. CRC press. https://doi.org/10.1201/9781420086058
Lellek, S., Barfuß, C., & Sattelmayer, T. (2017). Experimental study of the interaction of water sprays with swirling premixed natural gas flames. Journal of Engineering for Gas Turbines and Power, 139(2), 021506. https://doi.org/10.1115/1.4034238
Lu, J., Fu, Z., Liu, J., & Pan, W. (2022). Influence of air distribution on combustion characteristics of a micro gas turbine fuelled by hydrogen-doped methane. Energy Reports, 8, 207-216. https://doi.org/10.1016/j.egyr.2021.11.027
Medhat, M., Yehia, M., Franco, M. C., & Rocha, R. C. (2021). A numerical prediction of stabilized turbulent partially premixed flames using ammonia/hydrogen mixture. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 87(3), 113-133. https://doi.org/10.37934/arfmts.87.3.113133
Meziane, S., & Bentebbiche, A. (2019). Numerical study of blended fuel natural gas-hydrogen combustion in rich/quench/lean combustor of a micro gas turbine. International Journal of Hydrogen Energy, 44(29), 15610-15621. https://doi.org/10.1016/j.ijhydene.2019.04.128
Nam, J., Lee, Y., Joo, S., Yoon, Y., & Yoh, J. J. (2019). Numerical analysis of the effect of the hydrogen composition on a partially premixed gas turbine combustor. International Journal of Hydrogen Energy, 44(12), 6278-6286. https://doi.org/10.1016/j.ijhydene.2019.01.066
Pappa, A., Bricteux, L., Bénard, P., & De Paepe, W. (2021). Can water dilution avoid flashback on a hydrogen-enriched micro-gas turbine combustion?—a large eddy simulations study. Journal of Engineering for Gas Turbines and Power, 143(4), 041008. https://doi.org/10.1115/1.4049798
Patankar, S. (2018). Numerical heat transfer and fluid flow. https://doi.org/https://doi.org/10.1201/9781482234213
Poinsot, T., & Veynante, D. (2005). Theoretical and numerical combustion. RT Edwards, Inc.
Reale, F. (2022). Effects of steam injection on the permissible hydrogen content and gaseous emissions in a micro gas turbine supplied by a mixture of CH4 and H2: A CFD analysis. Energies, 15(8), 2914. https://doi.org/10.3390/en15082914
Reale, F., & Sannino, R. (2021). Water and steam injection in micro gas turbine supplied by hydrogen enriched fuels: Numerical investigation and performance analysis. International Journal of Hydrogen Energy, 46(47), 24366-24381. https://doi.org/10.1016/j.ijhydene.2021.04.169
Reale, F., Calabria, R., Chiariello, F., Pagliara, R., & Massoli, P. (2012). A micro gas turbine fuelled by methane-hydrogen blends. Applied Mechanics and Materials, 232, 792-796. https://doi.org/10.4028/www.scientific.net/AMM.232.792
Serbin, S., Burunsuz, K., Chen, D., & Kowalski, J. (2022). Investigation of the characteristics of a low-emission gas turbine combustion chamber operating on a mixture of natural gas and hydrogen. Polish Maritime Research, 29(2), 64-76. https://doi.org/10.2478/pomr-2022-0018
Shan, F., Zhang, D., Hou, L., Fang, H., & Zhang, H. (2022). Partially premixed combustion simulation using a novel transported multi-regime flamelet model. Acta Astronautica, 191, 245-257. https://doi.org/https://doi.org/10.1016/j.actaastro.2021.11.020
Sher, A. A., Ahmad, N., Sattar, M., Phelan, P., & Lin, A. (2024). Computational analysis of multi-fuel micro-gas turbine annular combustion chamber. Journal of Thermal Analysis and Calorimetry, 149(8), 3317-3329. https://doi.org/https://doi.org/10.1007/s10973-024-12924-z
Shih, H. Y., & Liu, C. R. (2014). A computational study on the combustion of hydrogen/methane blended fuels for a micro gas turbines. International Journal of Hydrogen Energy, 39(27), 15103-15115. https://doi.org/10.1016/j.ijhydene.2014.07.046
Sohrabi, A., & Mirsajedi, S. M. (2024). 3D simulation and study of biogas combustion in C30 microturbine annular combustion chamber. Fuel and Combustion, 17(1), 72-86. https://doi.org/10.22034/jfnc.2024.456905.1392
Therkelsen, P., Mauzey, J., McDonell, V., & Samuelsen, S. (2006). Evaluation of a low emission gas turbine operated on hydrogen. Turbo Expo: Power for Land, Sea, and Air. https://doi.org/10.1115/GT2006-90725
Therkelsen, P., Werts, T., McDonell, V., & Samuelsen, S. (2009). Analysis of NOx formation in a hydrogen-fueled gas turbine engine. Journal of Engineering for Gas Turbines and Power, 131(3). https://doi.org/10.1115/1.3028232
Wang, P., Hashemi, S. M., He, H., & Cheng, K. (2022). Investigation of the partially premixed turbulent combustion through the PRECCINSTA burner by large eddy simulation. Aerospace Science and Technology, 121, 107336. https://doi.org/https://doi.org/10.1016/j.ast.2022.107336
Xiao, C., Omidi, M., Surendar, A., Alizadeh, A. a., Bokov, D. O., Binyamin, & Toghraie, D. (2022). Simulation of combustion flow of methane gas in a premixed low-swirl Burner using a partially premixed combustion model. Journal of Thermal Science, 31(5), 1663-1681. https://doi.org/https://doi.org/10.1007/s11630-022-1611-z