Abagnale, C., Cameretti, M. C., De Robbio, R., & Tuccillo, R. (2017). Thermal cycle and combustion analysis of a solar-assisted micro gas turbine.
Energies,
10(6), 773.
https://doi.org/10.3390/en10060773
Adamou, A., Costall, A., Turner, J. W., Jones, A., & Copeland, C. (2023). Experimental performance and emissions of additively manufactured high-temperature combustion chambers for micro-gas turbines.
International Journal of Engine Research,
24(4), 1273-1289.
https://doi.org/10.1177/14680874221082636
Banerjee, A., Sarkar, S., Mukhopadhyay, A., & Sen, S. (2021).
The effects of steam and water spray addition on NOx emissions from a combustor using simple reactor models. Conference on Fluid Mechanics and Fluid Power.
https://doi.org/10.1007/978-981-19-6970-6_87
Bastani, M., Tabejamaat, S., Mani, M., & Ashini, H. (2025). Numerical and experimental investigation of microturbine combustion chamber performance and emissions through biogas consumption with varied component ratios.
Fuel,
380, 133234.
https://doi.org/10.1016/j.fuel.2024.133234
Bouam, A., Aissani, S., & Kadi, R. (2008). Combustion chamber steam injection for gas turbine performance improvement during high ambient temperature operations.
https://doi.org/10.1115/1.2898834
Bulat P., V., Vokin Leonid, O., Konstantin, N. V., Nikitenko Alexander, B., Prodan Nikolai, V., & Maksim, E. R. (2024a). Configurable combustion models of combustion chamber of microturbine engine with possibility of connecting various physico-chemical processes.
Journal Scientific and Technical Of Information Technologies, Mechanics and Optics,
156(4), 645.
https://doi.org/ 10.17586/2226-1494-2024-24-4-645-653
Bulat, P., Vokin, L., Volkov, K., Nikitenko, A., Prodan, N., & Renev, M. (2024b). Numerical simulation of performance of micro gas turbine engine combustion chamber taking into account oil addition to fuel.
Russian Aeronautics,
67(3), 594-600.
https://doi.org/ 10.3103/S1068799824030140
Caldeira-Pires, A., Heitor, M., & Carvalho Jr, J. (2000). Characteristics of nitric oxide formation rates in turbulent nonpremixed jet flames.
Combustion and Flame,
120(3), 383-391.
https://doi.org/10.1016/S0010-2180(99)00094-2
Carusotto, S., Goel, P., Baratta, M., Misul, D. A., Salvadori, S., Cardile, F., Forno, L., Toppino, M., & Valsania, M. (2022). Combustion characterization in a diffusive gas turbine burner for hydrogen-compliant applications.
Energies,
15(11), 4117.
https://doi.org/10.3390/en15114117
Chen, J., Mitchell, M. G., & Nourse, J. G. (2009).
Development of ultra-low emission liquid fuel-fired microturbine engines for vehicular heavy duty applications. Turbo Expo: Power for Land, Sea, and Air.
https://doi.org/10.1115/GT2009-60257
Chen, J., Mitchell, M. G., & Nourse, J. G. (2010).
Development of ultra-low emission diesel fuel-fired microturbine engines for vehicular heavy duty applications: combustion modifications. Turbo Expo: Power for Land, Sea, and Air,
https://doi.org/10.1115/GT2010-23181
Chen, S., Zhao, D., Li, H. K. H., Ng, T. Y., & Jin, X. (2017). Numerical study of dynamic response of a jet diffusion flame to standing waves in a longitudinal tube.
Applied Thermal Engineering,
112, 1070-1082.
https://doi.org/https://doi.org/10.1016/j.applthermaleng.2016.10.152
Di Nardo, A., Bo, A., Calchetti, G., Giacomazzi, E., & Messina, G. (2020). Study on the fuel flexibility of a microgas turbine combustor burning different mixtures of H2, CH4, and CO2.
Journal of Engineering for Gas Turbines and Power,
142(6), 061001.
https://doi.org/10.1115/1.4046706
Du Toit, M., Engelbrecht, N., Oelofse, S. P., & Bessarabov, D. (2020). Performance evaluation and emissions reduction of a micro gas turbine via the co-combustion of H2/CH4/CO2 fuel blends.
Sustainable Energy Technologies and Assessments,
39, 100718.
https://doi.org/10.1016/j.seta.2020.100718
Fantozzi, F., Laranci, P., Bianchi, M., De Pascale, A., Pinelli, M., & Cadorin, M. (2009).
CFD simulation of a microturbine annular combustion chamber fuelled with methane and biomass pyrolysis syngas: Preliminary results. Turbo Expo: Power for Land, Sea, and Air.
https://doi.org/10.1115/GT2009-60030
Farokhipour, A., Hamidpour, E., & Amani, E. (2018). A numerical study of NOx reduction by water spray injection in gas turbine combustion chambers.
Fuel,
212, 173-186.
https://doi.org/10.1016/j.fuel.2017.10.033
Fluent, A. (2011). Ansys fluent theory guide. Ansys Inc., USA, 15317, 724-746.
Funke, H. W., Beckmann, N., & Abanteriba, S. (2019). An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications.
International Journal of Hydrogen Energy,
44(13), 6978-6990.
https://doi.org/10.1016/j.ijhydene.2019.01.161
Furuhata, T., Kawata, T., Mizukoshi, N., & Arai, M. (2010). Effect of steam addition pathways on NO reduction characteristics in a can-type spray combustor.
Fuel,
89(10), 3119-3126.
https://doi.org/10.1016/j.fuel.2010.05.018
Glanville, P., Fridlyand, A., Sutherland, B., Liszka, M., Zhao, Y., Bingham, L., & Jorgensen, K. (2022). Impact of hydrogen/natural gas blends on partially premixed combustion equipment: NOx emission and operational performance.
Energies,
15(5), 1706.
https://doi.org/https://doi.org/10.3390/en15051706
Haynes, J., Janssen, J., Russell, C., & Huffman, M. (2006).
Advanced combustion systems for next generation gas turbines.
https://doi.org/10.2172/888744
Jamshidiha, M., Kamal, M., Cafiero, M., Coussement, A., & Parente, A. (2024). Experimental and numerical characterization of hydrogen combustion in a reverse-flow micro gas turbine combustor.
International Journal of Hydrogen Energy,
55, 1299-1311.
https://doi.org/https://doi.org/10.1016/j.ijhydene.2023.11.243
Khosravy el_Hossaini, M. (2013).
Review of the new combustion technologies in modern gas turbines. Progress in Gas Turbine Performance, 978-953.
https://doi.org/10.5772/54403
Lellek, S., Barfuß, C., & Sattelmayer, T. (2017). Experimental study of the interaction of water sprays with swirling premixed natural gas flames.
Journal of Engineering for Gas Turbines and Power,
139(2), 021506.
https://doi.org/10.1115/1.4034238
Lu, J., Fu, Z., Liu, J., & Pan, W. (2022). Influence of air distribution on combustion characteristics of a micro gas turbine fuelled by hydrogen-doped methane.
Energy Reports,
8, 207-216.
https://doi.org/10.1016/j.egyr.2021.11.027
Medhat, M., Yehia, M., Franco, M. C., & Rocha, R. C. (2021). A numerical prediction of stabilized turbulent partially premixed flames using ammonia/hydrogen mixture.
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences,
87(3), 113-133.
https://doi.org/10.37934/arfmts.87.3.113133
Meziane, S., & Bentebbiche, A. (2019). Numerical study of blended fuel natural gas-hydrogen combustion in rich/quench/lean combustor of a micro gas turbine.
International Journal of Hydrogen Energy,
44(29), 15610-15621.
https://doi.org/10.1016/j.ijhydene.2019.04.128
Nam, J., Lee, Y., Joo, S., Yoon, Y., & Yoh, J. J. (2019). Numerical analysis of the effect of the hydrogen composition on a partially premixed gas turbine combustor.
International Journal of Hydrogen Energy,
44(12), 6278-6286.
https://doi.org/10.1016/j.ijhydene.2019.01.066
Pappa, A., Bricteux, L., Bénard, P., & De Paepe, W. (2021). Can water dilution avoid flashback on a hydrogen-enriched micro-gas turbine combustion?—a large eddy simulations study.
Journal of Engineering for Gas Turbines and Power,
143(4), 041008.
https://doi.org/10.1115/1.4049798
Poinsot, T., & Veynante, D. (2005). Theoretical and numerical combustion. RT Edwards, Inc.
Reale, F. (2022). Effects of steam injection on the permissible hydrogen content and gaseous emissions in a micro gas turbine supplied by a mixture of CH4 and H2: A CFD analysis.
Energies,
15(8), 2914.
https://doi.org/10.3390/en15082914
Reale, F., & Sannino, R. (2021). Water and steam injection in micro gas turbine supplied by hydrogen enriched fuels: Numerical investigation and performance analysis.
International Journal of Hydrogen Energy,
46(47), 24366-24381.
https://doi.org/10.1016/j.ijhydene.2021.04.169
Reale, F., Calabria, R., Chiariello, F., Pagliara, R., & Massoli, P. (2012). A micro gas turbine fuelled by methane-hydrogen blends.
Applied Mechanics and Materials,
232, 792-796.
https://doi.org/10.4028/www.scientific.net/AMM.232.792
Serbin, S., Burunsuz, K., Chen, D., & Kowalski, J. (2022). Investigation of the characteristics of a low-emission gas turbine combustion chamber operating on a mixture of natural gas and hydrogen.
Polish Maritime Research,
29(2), 64-76.
https://doi.org/10.2478/pomr-2022-0018
Shan, F., Zhang, D., Hou, L., Fang, H., & Zhang, H. (2022). Partially premixed combustion simulation using a novel transported multi-regime flamelet model.
Acta Astronautica,
191, 245-257.
https://doi.org/https://doi.org/10.1016/j.actaastro.2021.11.020
Sher, A. A., Ahmad, N., Sattar, M., Phelan, P., & Lin, A. (2024). Computational analysis of multi-fuel micro-gas turbine annular combustion chamber.
Journal of Thermal Analysis and Calorimetry,
149(8), 3317-3329.
https://doi.org/https://doi.org/10.1007/s10973-024-12924-z
Shih, H. Y., & Liu, C. R. (2014). A computational study on the combustion of hydrogen/methane blended fuels for a micro gas turbines.
International Journal of Hydrogen Energy,
39(27), 15103-15115.
https://doi.org/10.1016/j.ijhydene.2014.07.046
Therkelsen, P., Mauzey, J., McDonell, V., & Samuelsen, S. (2006).
Evaluation of a low emission gas turbine operated on hydrogen. Turbo Expo: Power for Land, Sea, and Air.
https://doi.org/10.1115/GT2006-90725
Therkelsen, P., Werts, T., McDonell, V., & Samuelsen, S. (2009). Analysis of NOx formation in a hydrogen-fueled gas turbine engine.
Journal of Engineering for Gas Turbines and Power,
131(3).
https://doi.org/10.1115/1.3028232
Xiao, C., Omidi, M., Surendar, A., Alizadeh, A. a., Bokov, D. O., Binyamin, & Toghraie, D. (2022). Simulation of combustion flow of methane gas in a premixed low-swirl Burner using a partially premixed combustion model.
Journal of Thermal Science,
31(5), 1663-1681.
https://doi.org/https://doi.org/10.1007/s11630-022-1611-z