Numerical Investigation of the Aerodynamic and Aeroacoustic Characteristics of a Double-suction Centrifugal Fan under Different Operating Conditions

Document Type : Regular Article

Authors

1 School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China

2 Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, 315336, China

3 Ningbo Fotile Kitchen Ware Company, Ningbo, 315336, China

4 Key Laboratory of Healthy & Intelligent Kitchen System Integration of Zhejiang Province, Ningbo, 315336, China

Abstract

Centrifugal fans are widely used in the ventilation and domestic appliance industries. Their aerodynamic and aeroacoustic characteristics vary significantly in different application scenarios and operating conditions. This study applied a double-suction multiblade centrifugal fan to a range hood. The full three-dimensional flow and acoustic field were calculated synchronously using direct computational aeroacoustics (CAA) based on the lattice Boltzmann method (LBM) to investigate the internal flow, aerodynamic noise, and acoustic source characteristics of the fan under different operating conditions. We focused on two typical operating conditions: the maximum volume flow rate and working volume flow rate. The accuracy of the numerical simulation was verified using experimental data measured from the performance test bench and the semianechoic chamber. The flow field results show that more than 70% of the airflow enters the volute from the main wind inlet; this asymmetric wind intake condition creates an asymmetric flow pattern inside the volute. Acoustic waves radiate to the far-field mainly through the inlet and outlet of the range hood. The propagation characteristics of a dipole source are not very obvious and the tonal noise associated with the blade passage frequency (BPF) is not significant. In addition to the acoustic sources identified in the impeller region, the volute tongue, and the gap between the impeller and the inlet nozzle, two other significant acoustic sources are identified in the outlet collector and inlet nozzle regions.

Keywords

Main Subjects


Bai, M., Liu, Z., Ling, Y., & Tan, H. (2024). Effect of impeller structure on aerodynamic performance and noise reduction of a small multi-blade centrifugal fan. Science and Technology for the Built Environment, 30(6), 563–578. https://doi.org/10.1080/23744731.2024.2357526
Baloni, B. D., Pathak, Y., & Channiwala, S. A. (2015). Centrifugal blower volute optimization based on Taguchi method. Computers and Fluids, 112, 72–78. https://doi.org/10.1016/j.compfluid.2015.02.007
Basner, M., Brink, M., Bristow, A., de Kluizenaar, Y., Finegold, L., Hong, J., Janssen, S. A., Klaeboe, R., Leroux, T., Liebl, A., Matsui, T., Schwela, D., Sliwinska-Kowalska, M., & Sörqvist, P. (2015). ICBEN review of research on the biological effects of noise 2011-2014. Noise Health, 17(75), 57–82. https://doi.org/10.4103/1463-1741.153373
Carlos, P. A., Thomas, L., Marlène, S., Stéphane, M., & Florent, D. (2019). Large Eddy simulation of a scale-model turbofan for fan noise source diagnostic. Journal of Sound and Vibration, 445, 64–76. https://doi.org/10.1016/j.jsv.2019.01.005
Casalino, D., Velden, W., & Romani, G. (2019). Community noise of urban air transportation vehicles. AIAA 2019-1834. AIAA Scitech 2019 Forum. San Diego, California. https://doi.org/10.2514/6.2019-1834
Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S., & Yakhot, Y. (2003). Extended Boltzmann kinetic equation for turbulent flows. Science, 301, 633–636. https://doi.org/10.1126/science.108504
Chen, J., He, Y., Gui, L., Wang, C., Chen, L., & Li, Y. (2018). Aerodynamic noise prediction of a centrifugal fan considering the volute effect using IBEM. Applied Acoustics, 132, 182−190. https://doi.org/10.1016/j.apacoust.2017.10.015
Chen, S., & Doolen, G. D. (1998). Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 30(1), 329–364. https://doi.org/10.1146/annurev.fluid.30.1.329
Damiano, C., Francesco, A., Ignacio, G. M., & Daniele, R. (2019). Aeroacoustic study of a wavy stator leading edge in a realistic fan/OGV stage. Journal of Sound and Vibration, 442, 138–154. https://doi.org/10.1016/j.jsv.2018.10.057
Freed, D. M. (1998). Lattice-Boltzmann method for macroscopic porous media modeling. International Journal of Modern Physics C, 9(8), 1491–1503. https://doi.org/10.1142/S0129183198001357
Gholamian, M., Rao, G., & Bhramara, P. (2013). Numerical investigation on effect of inlet nozzle size on efficiency and flow pattern in squirrel cage fans. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 227(8), 896–907. https://doi.org/10.1177/0957650913504566
Gianluca, R., & Damiano, C. (2019). Rotorcraft blade-vortex interaction noise prediction using the Lattice-Boltzmann method. Aerospace Science and Technology, 88, 147–157. https://doi.org/10.1016/j.ast.2019.03.029
Gianluca, R., Damiano, C., & Velden, W. (2021). Numerical analysis of airfoil trailing-edge noise for straight and serrated edges at incidence. AIAA Journal, 59(7), 2558–2577. https://doi.org/10.2514/1.J059457
Guillaume, B., Franck, P., & David, F. (2009). Properties of the lattice Boltzmann method for acoustics. AIAA 2009-3395. 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference). Miami, Florida. https://doi.org/10.2514/6.2009-3395
Hu, S., Wu, J., Hu, X., Chen, P., & Zhang, L. (2023). Study on main noise sources and partition contribution of a multi-blade centrifugal fan in a range hood. Fluid Machinery, 51(12), 64–70. https://doi.org/10.3969/j.issn.1005-0329.2023.12.010
Kazuya, K., Kazutoyo, Y., & Masato, F. (2020). Aeroacoustic simulation of broadband sound generated from low-Mach-number flows using a lattice Boltzmann method. Journal of Sound and Vibration, 467, 115044. https://doi.org/10.1016/j.jsv.2019.115044
Keyur, P., & Prajesh, M. (2013). Performance analysis and optimization of centrifugal fan. International Journal of Emerging Trends in Engineering and Development, 3(2), 261–270. https://www.researchgate.net/publication/286354454
Kim, J. S., Jeong, U. C., Kim, D. W., Han, S. Y., & Oh, J. E. (2015). Optimization of sirocco fan blade to reduce noise of air purifier using a metamodel and evolutionary algorithm. Applied Acoustics, 89, 254–266. https://doi.org/10.1016/j.apacoust.2014.10.005
Kryter, K. D. (1962). Methods for the calculation and use of the articulation index. The Journal of the Acoustical Society of America, 34(11), 1689–1697. https://doi.org/10.1121/1.1909094
Liu, H., Jiang, B., Wang, J., Yang, X., & Xiao, Q. (2021). Numerical and experimental investigations on non-axisymmetric D-type inlet nozzle for a squirrel-cage fan. Engineering Applications of Computational Fluid Mechanics, 15(1), 363–376. https://doi.org/10.1080/19942060.2021.1883115
Lu, H., Xiao, Y., Liu, Z., Yuan, Y., Zhou, P., & Yang, G. (2023). Investigation on accuracy of numerical simulation of aerodynamic noise of single-stage axial fan. Physics of Fluids, 35(11), 115136. https://doi.org/10.1063/5.0174731
Mann, A., Pérot, F., Meskine, M., & Kim, M. S. (2015). Designing quieter HVAC systems coupling LBM and flow-induced noise source identification methods. 10th FKFS-Conference, Progress in Vehicle Aerodynamics and Thermal Management. Stuttgart, Germany. https://www.researchgate.net/publication/282442139
Melanie, P., Bruno, B. C., Vincent, L. G., Vincent, V., & Franck, P. (2014). Direct aeroacoustics simulation of automotive engine cooling fan system: effect of upstream geometry on broadband noise. AIAA 2014-2455. 20th AIAA/CEAS Aeroacoustics Conference. Atlanta, United States. https://doi.org/10.2514/6.2014-2455
Michael, C., Leon, B., Mehdi, R. K., Ehab, F., & Benedikt, K. (2021). Comparison of Boeing 777 airframe noise flight test data with numerical simulations. AIAA 2021-2162. AIAA Aviation 2021 Forum. Virtual Event. https://doi.org/10.2514/6.2021-2162
Moreau, S. (2022). The third golden age of aeroacoustics. Physics of Fluids, 34(3), 031301. https://doi.org/10.1063/5.0084060
Powell, A. (1964). Theory of vortex sound. The Journal of the Acoustical Society of America, 36(1), 177–195. https://doi.org/10.1121/1.1918931
Qian, Y. H., D’Humieres, D., & Lallemand, P. (1992). Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 17(6), 479–484. https://doi.org/10.1209/0295-5075/17/6/001
Rebecca, S., & Martin, B. (2019). Influence of the mesh size on the aerodynamic and aeroacoustics of a centrifugal fan using the Lattice Boltzmann Method. Proceedings of the 23rd International Congress on Acoustics: Integrating 4th EAA Euroregio 2019. Aachen, Germany. https://doi.org/10.18154/RWTH-CONV-239255
Rebecca, S., & Martin, B. (2020). Validation of the lattice Boltzmann method for simulation of aerodynamics and aeroacoustics in a centrifugal fan. Acoustics, 2(4), 735–752. https://doi.org/10.3390/acoustics2040040
Rui, X., Lin, L., Wang, J., Ye, X., He, H., Zhang, W., Zhu, Z. (2020). Experimental and comparative RANS/URANS investigations on the effect of radius of volute tongue on the aerodynamics and aeroacoustics of a sirocco fan. Processes, 8(11), 1442. https://doi.org/10.3390/pr8111442
Seo, S. J., Kim, K. Y., & Kang, S. H. (2003). Calculations of three-dimensional viscous flow in a multiblade centrifugal fan by modelling blade forces. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 217(3), 287–297. https://doi.org/10.1243/095765003322066510
Simon, M., Denis, R., & Pierre, S. (2009). Comparison between lattice Boltzmann method and Navier–Stokes high order schemes for computational aeroacoustics. Journal of Computational Physics, 228(4), 1056−1070. https://doi.org/10.1016/j.jcp.2008.10.021
Stephan, M., Marlene, S., Stephane, M., Alain, B., & Anthony, G. (2013). Tonal noise control of centrifugal fan using flow obstructions - experimental and numerical approaches. AIAA 2013-2043. 19th AIAA/CEAS Aeroacoustics Conference. Berlin, Germany. https://doi.org/10.2514/6.2013-2043
Teruna, C., Manegar, F., Avallone, F., Ragni, D., Casalino, D., & Carolus, T. (2020). Noise reduction mechanisms of an open-cell metal-foam trailing edge. Journal of Fluid Mechanics, 898(A18). https://doi.org/doi:10.1017/jfm.2020.363
Tim, C., & Sanjiva, K. L.  (2004). Computational aeroacoustics: progress on nonlinear problems of sound generation. Progress in Aerospace Sciences, 40(6), 345–416. https://doi.org/10.1016/j.paerosci.2004.09.001
Wang, K., Ju, Y., & Zhang, C. (2020). Experimental and numerical investigations on effect of blade trimming on aerodynamic performance of squirrel cage fan. International Journal of Mechanical Sciences, 177, 105579. https://doi.org/10.1016/j.ijmecsci.2020.105579
Wei, Y., Wang, J., Xu, J., Wang, Z., Luo, J., Yang, H., Zhu, Z., & Zhang, W. (2022). Effects of inclined volute tongue structure on the internal complex flow and aerodynamic performance of the multi-blade centrifugal fan. Journal of Applied Fluid Mechanics, 15(3), 901–916. https://doi.org/10.47176/jafm.15.03.32847
Yang, X., Yang, Y., Jiang, B., Gao, X., Hu, T., Wang, J. (2024). Morphological effects of leading-edge sawtooth on the vortex evolution and acoustic characteristic of an ultra-thin centrifugal fan. Physics of Fluids, 36(6), 065103. https://doi.org/10.1063/5.0206927
Ye, J., Liu, W., Duan, P., Huang, X., Shao, J., & Zhang, Y. (2018). Investigation of the performance and flow behaviors of the multi-blade centrifugal fan based on the computer simulation technology. Wireless Personal Communications, 103, 563–574. https://doi.org/10.1007/s11277-018-5461-7
Zhang, Y., Xiao, Y., Liu, R., & Chen, H. (2022). Aeroacoustic prediction based on large-eddy simulation and the Ffowcs Williams–Hawkings equation. Advances in Aerodynamics, 4(19), 1–18. https://doi.org/10.1186/s42774-022-00112-2
Zhou, W., Zhou, P., Xiang, C., Wang, Y., Mou, J., & Cui, J. (2023). A review of bionic structures in control of aerodynamic noise of centrifugal fans. Energies, 16(11), 4331. https://doi.org/10.3390/en16114331