Abou-Kassem, A. J., Bizhani, M., & Kuru, E. (2023). A review of methods used for rheological characterization of yield-power-law (YPL) fluids and their impact on the assessment of frictional pressure loss in pipe flow.
Geoenergy Science and Engineering,
229, 212050.
https://doi.org/10.1016/j.geoen.2023.212050
Ayas, M., Skocilas, J., & Jirout, T. (2021). Friction factor of shear thinning fluids in non-circular ducts – a simplified approach for rapid engineering calculation.
Chemical Engineering Communications,
208(8), 1209-1217.
https://doi.org/10.1080/00986445.2020.1770232
Badekas, D., & Knight, D. D. (1992). Eddy correlations for laminar axisymmetric sudden expansion flows.
Journal of Fluids Engineering,
114, 119-121.
https://doi.org/10.1115/1.2909986
Bae, Y. M., & Kim, Y. I. (2014a). Prediction of local loss coefficient for turbulent flow in axisymmetric sudden expansions with a chamfer: Effect of Reynolds number.
Annals of Nuclear Energy,
73, 33-38.
https://doi.org/10.1016/j.anucene.2014.06.032
Bae, Y. M., & Kim, Y. I. (2014b). Prediction of local pressure drop for turbulent flow in axisymmetric sudden expansions with chamfered edge.
Chemical Engineering Research and Design,
92, 229-239.
https://doi.org/10.1016/j.cherd.2013.07.016
Bullen, P., Cheeseman, D., & Hussain, L. (1988). The effects of inlet sharpness on the pipe contraction pressure loss coefficient.
International Journal of Heat and Fluid Flow,
9(4), 431-433.
https://doi.org/10.1016/0142-727X(88)90012-4
Daugherty, R. L., Franzini, J. B., & Finnemore, E. J. (1985). Fluid mechanics with engineering applications. Eighth edition.
FLUENT Inc. (2019). FLUENT User's Guide.
Hooper, W. B. (1981). The two-K method predicts head losses in pipe fittings. Chemical Engineering, 88, 96-100.
Hooper, W. B. (1988). Calculate head loss caused by change in pipe size, Chemical Engineering, 95, 89–92.
Iguchi, M., & Ohmi, M. (1986). Loss coefficients for flows through a sudden expansion and a sudden contraction closely placed.
Transactions of the Japan Society of Mechanical Engineers Series B,
52(481), 3252-3258.
https://doi.org/10.1299/kikaib. 52.3252
Kao, Y. H., Jiang, Z. W., & Fang, S. C. (2017). A computational simulation study of fluid mechanics of low-speed wind tunnel contractions.
Fluids,
2(23), 23.
https://doi.org/10.3390/fluids2020023
Launder, B. E., & Spalding, D. B. (1972). Lectures in Mathematical Models of Turbulence. Academic Press.
Liu, X., Li, D., Qi, P., Qiao, W., Shang, Y., & Jiao, Z. (2023). A local resistance coefficient model of aircraft hydraulics bent pipe using laser powder bed fusion additive manufacturing.
Experimental Thermal and Fluid Science, 147, 110961.
https://doi.org/10.1016/j.expthermflusci.2023.110961
Liu, X., Liu, J., Wang, D., & Zhao, L. (2021). Experimental and numerical simulation investigations of an axial flow fan performance in high-altitude environments.
Energy,
234, 121281.
https://doi.org/10.1016/j.energy.2021.121281
Nikuradse, J. (1933). Flow laws in raised tubes. Zeitschrift Des Vereines Deutscher Ingenieure, 77, 1075-1076.
Oliveira, P. J., Pinho, F. T., & Schulte, A. (1998). A general correlation for the local loss coefficient in Newtonian axisymmetric sudden expansions.
International Journal of Heat and Fluid Flow,
19, 655-660.
https://doi.org/10.1016/S0142-727X(98) 10037-1
Pak, B., Cho, Y. I., & Choi, S. U. S. (1990). Separation and reattachment of non-Newtonian fluid flows in a sudden expansion pipe.
Journal of Non-Newtonian Fluid Mechanics,
37, 175-199.
https://doi.org/ 10.1016/0377-0257(90)90004-U.
Rennels, D. C. (2022).
Pipe flow: A practical and comprehensive guide. Second edition. Hoboken, NJ: Wiley. Part 2, Loss coefficients; Chapter 10, Contractions (pp. 113-125).
https://lccn.loc.gov/2021049297 (LC ebook record)."
Scott, P., Mirza, F., & Vlachopoulos, J. (1986). A finite element analysis of laminar flows through planar and axisymmetric abrupt expansions.
Computers & Fluids,
14, 423-432.
https://doi.org/10.1016/0045-7930(86)90016-2
Shames, I. H. (1992). Mechanics of fluids. McGraw-Hill, New York.
Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z. G., & Zhu, J. (1995). A new k-ε eddy viscosity model for high Reynolds number turbulent flows.
Computers & Fluids,
24(3), 227-238.
https://doi.org/10.1016/ 0045-7930(94)00032-T
Wilcox, D. C. (1994). Turbulence Modeling for CFD. DCW Industries, Inc.
Wu, H., Wang, Y., & Liu, Y. (2024). Flow characteristics and resistance coefficients of local components of building heat-moisture-oxygen transport pipelines in the Tibetan Plateau.
Journal of Building Engineering, 91, 109532.
https://doi.org/10.1016/j.jobe.2024. 109532
Xu, J., Yao, Y., Yan, H., Zhou, N., Su, H., Li, M., Liu, S., & Wang, H. (2024). Experimental study of pipeline pressure loss laws with large-size gangue slurry during the process of industrial-grade annular pipe transportation.
Construction and Building Materials,
436, 136993.
https://doi.org/10.1016/j.conbuildmat.2024.136993
Yao, L. M., Liu, J. B., Li, X. Y., Yue, Q. B., Liu, Y. X., & Wang, H. T. (2019). Application of the building block approach to characterize the pressure loss of water and fracturing fluid in contraction-expansion pipe.
Journal of Petroleum Science and Engineering,
176, 51-61.
https://doi.org/10.1016/j.petrol.2018.12.010
Yogaraja, L., Liyanagamage, N., & De Silva, K. (2021).
Comparison of experimental results with empirical relationships for energy losses in pipe flow. 2021 Moratuwa Engineering Research Conference (MERCon) (pp. 522-527). Moratuwa, Sri Lanka.
https://doi.org/10.1109/MERCon52712.2021.9525661