Size Distribution and Mean Diameter of Microbubbles in Different Types of Ejector Bubble Generators

Document Type : Regular Article

Authors

1 Department of Mechanical Engineering, Politeknik Negeri Banyuwangi, Jalan Raya Jember Km. 13, Kabat, Banyuwangi 68461, Indonesia

2 Department of Agribusiness, Politeknik Negeri Banyuwangi, Jalan Raya Jember Km. 13, Kabat, Banyuwangi 68461, Indonesia

3 Department of Civil Engineering, Politeknik Negeri Banyuwangi, Jalan Raya Jember Km. 13, Kabat, Banyuwangi 68461, Indonesia

4 Department of Mechanical Engineering Education, Universitas Negeri Yogyakarta, Yogyakarta 55281, Indonesia

Abstract

This study investigates the influence of air discharge on bubble size distribution across various types of bubble generators. Air discharge rates were adjusted between 0.1 lpm and 1.0 lpm for ejector, ejector-barrier plate, and venturi bubble generators, under a controlled experimental setup. High-speed camera footage captured bubble images, which were then analyzed to determine size distributions. A predictive correlation for bubble size distribution was formulated using the Buckingham Pi theorem. Results revealed that increased air discharge correlated with larger bubble diameters, with average increases of 8.01%, 10.71%, and 9.25% for ejector, ejector-barrier plate, and venturi generators, respectively. Notably, the ejector-barrier plate generator exhibited the greatest capability for producing smaller bubbles, with a peak increase in the probability density function of 13.95% for the ejector type, 18.05% for the ejector-barrier plate type, and 9.49% for the venturi type. Experimental findings aligned well with the proposed predictive model for average diameter and bubble size distribution.

Keywords

Main Subjects


Afisna, L. P., Juwana, W. E., Indarto, I., Deendarlianto, D., & Nugroho, F. M. (2017). Performance of Porous-Venturi Microbubble Generator for Aeration Process. Journal of Energy, Mechanical, Material, and Manufacturing Engineering, 2(2), 73–80. https://doi.org/10.22219/jemmme.v2i2.5054
Bagatur, T. (2014). Evaluation of plant growth with aerated irrigation water using venturi pipe part. Arabian Journal for Science and Engineering, 39(4), 2525–2533. https://doi.org/10.1007/s13369-013-0895-4
Basso, A., Hamad, F. A., & Ganesan, P. (2018). Effects of the geometrical configuration of air–water mixer on the size and distribution of microbubbles in aeration systems. Asia-Pacific Journal of Chemical Engineering, 13(6), e2259. https://doi.org/10.1002/apj.2259
Baylar, A., Ozkan, F., & Unsal, M. (2010). Using Venturi Tubes in Two-Phase Aeration Processes. Editörler: Mehmet Emin AYDIN. July 2021.
Catrawedarma, I., Deendarlianto, & Indarto. (2020). The performance of airlift pump for the solid particles lifting during the transportation of gas-liquid-solid three-phase flow: A comprehensive research review. Proc IMechE Part E: J. Process Mechanical Engineering, 0(0), 1–23. https://doi.org/10.1177/0954408920951728
Catrawedarma, IGNB., Deendarlianto, & Indarto. (2021). Statistical characterization of flow structure of air – water two-phase flow in airlift pump – Bubble generator system. International Journal of Multiphase Flow, 138(103596), 1–16. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103596
Deendarlianto, D., Indarto, I., Juwana, W. E., Afisna, L. P., & Nugroho, F. M. (2017). Performance of porous-venturi microbubble generator for aeration process. Journal of Energy, Mechanical, Material and Manufacturing Engineering, 2(2). https://doi.org/10.22219/jemmme.v2i2.5054
Ding, G., Li, Z., Chen, J., & Cai, X. (2021). An investigation on the bubble transportation of a two-stage series venturi bubble generator. Chemical Engineering Research and Design, 174, 345–356. https://doi.org/10.1016/j.cherd.2021.08.022
Enany, P., Shevchenko, O., & Drebenstedt, C. (2021). Experimental evaluation of airlift performance for vertical pumping of water in underground mines. Mine Water and the Environment, 40(4), 970–979. https://doi.org/10.1007/s10230-021-00807-w
Gordiychuk, A., Svanera, M., Benini, S., & Poesio, P. (2016). Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator. Experimental Thermal and Fluid Science, 70, 51–60. https://doi.org/10.1016/j.expthermflusci.2015.08.014
Huang, J., Sun, L., Du, M., Liang, Z., Mo, Z., Tang, J., & Xie, G. (2020a). An investigation on the performance of a micro-scale Venturi bubble generator. Chemical Engineering Journal, 386, 120980. https://doi.org/10.1016/j.cej.2019.02.068
Huang, J., Sun, L., Liu, H., Mo, Z., Tang, J., Xie, G., & Du, M. (2020b). A review on bubble generation and transportation in Venturi-type bubble generators. Experimental and Computational Multiphase Flow, 2(3), 123–134. https://doi.org/10.1007/s42757-019-0049-3
Juwana, W. E., Widyatama, A., Dinaryanto, O., Budhijanto, W., Indarto, & Deendarlianto. (2019). Hydrodynamic characteristics of the microbubble dissolution in liquid using orifice type microbubble generator. Chemical Engineering Research and Design, 141, 436–448. https://doi.org/10.1016/j.cherd.2018.11.017
Khuntia, S., Majumder, S. K., & Ghosh, P. (2012). Microbubble-aided water and wastewater purification: A review. Reviews in Chemical Engineering, 28(4–6). https://doi.org/10.1515/revce-2012-0007
Lee, C. H., Choi, H., Jerng, D. W., Kim, D. E., Wongwises, S., & Ahn, H. S. (2019). Experimental investigation of microbubble generation in the venturi nozzle. International Journal of Heat and Mass Transfer, 136, 1127–1138. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.040
Li, J., Song, Y., Yin, J., & Wang, D. (2017). Investigation on the effect of geometrical parameters on the performance of a venturi type bubble generator. Nuclear Engineering and Design, 325(September), 90–96. https://doi.org/10.1016/j.nucengdes.2017.10.006
Ligus, G., Zajac, D., Masiukiewicz, M., & Anweiler, S. (2019). A new method of selecting the airlift pump optimum efficiency at low submergence ratios with the use of image analysis. Energies, 12(4). https://doi.org/10.3390/en12040735
Lim, J. Y., Kim, H. S., Park, S. Y., & Kim, J. H. (2019a). The design of an ejector type microbubble generator for aeration tanks. Membrane and Water Treatment, 10(4), 307–311. https://doi.org/10.12989/MWT.2019.10.4.307
Lim, J. Y., Kim, H. S., Park, S. Y., & Kim, J. H. (2019b). Simultaneous nitrification and denitrification by using ejector type microbubble generator in a single reactor. Environmental Engineering Research, 25(2), 252–257. https://doi.org/10.4491/eer.2018.427
Lim, Y. S., Ganesan, P., Varman, M., Hamad, F. A., & Krishnasamy, S. (2021). Effects of microbubble aeration on water quality and growth performance of Litopenaeus vannamei in biofloc system. Aquacultural Engineering93, 102159. https://doi.org/10.1016/j.aquaeng.2021.102159
Liu, C., Tanaka, H., Ma, J., Zhang, L., Zhang, J., Huang, X., & Matsuzawa, Y. (2012). Effect of microbubble and its generation process on mixed liquor properties of activated sludge using Shirasu porous glass (SPG) membrane system. Water Research, 46(18), 6051–6058. https://doi.org/10.1016/j.watres.2012.08.032
Liu, C., Tanaka, H., Zhang, J., Zhang, L., Yang, J., Huang, X., & Kubota, N. (2013). Successful application of Shirasu porous glass (SPG) membrane system for microbubble aeration in a biofilm reactor treating synthetic wastewater. Separation and Purification Technology, 103, 53–59. https://doi.org/10.1016/j.seppur.2012.10.023
Lu, J., Jones, O. G., Yan, W., & Corvalan, C. M. (2023). Microbubbles in food technology. Annual Review of Food Science and Technology, 14(1), 495–515. https://doi.org/10.1146/annurev-food-052720-113207
Mawarni, D. I., Juwana, W. E., Catrawedarma, I., Yuana, K. A., Budhijanto, W., Deendarlianto, D., & Indarto, I. (2023). Statistical characterization of bubble breakup flow structures in swirl-type bubble generator systems. ASEAN Journal of Chemical Engineering, 23(1), 62. https://doi.org/10.22146/ajche.78558
Park, S. K., & Yang, H. C. (2017). Experimental investigation on mixed jet and mass transfer characteristics of horizontal aeration process. International Journal of Heat and Mass Transfer, 113, 544–555. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.120
Sadatomi, M., Kawahara, A., Kano, K., & Ohtomo, A. (2005). Performance of a new micro-bubble generator with a spherical body in a flowing water tube. Experimental Thermal and Fluid Science, 29(5), 615–623. https://doi.org/10.1016/j.expthermflusci.2004.08.006
Sadatomi, M., Kawahara, A., Matsuura, H., & Shikatani, S. (2012). Micro-bubble generation rate and bubble dissolution rate into water by a simple multi-fluid mixer with orifice and porous tube. Experimental Thermal and Fluid Science, 41, 23–30. https://doi.org/10.1016/j.expthermflusci.2012.03.002
Sari, E. N., Fiveriati, A., Rusti, N., Rulianto, J., Bhiqman Susanto, R., & Catrawedarma, I. (2024). Visual and pressure signal investigations on bubble produced by ejector bubble generator. E3S Web of Conferences, 483, 03020. https://doi.org/10.1051/e3sconf/202448303020
Seo, H., Aliyu, A. M., & Kim, K. C. (2018). Enhancement of momentum transfer of bubble swarms using an ejector with water injection. Energy, 162, 892–909. https://doi.org/10.1016/j.energy.2018.08.049
Sun, L., Mo, Z., Zhao, L., Liu, H., Guo, X., Ju, X., & Bao, J. (2017). Characteristics and mechanism of bubble breakup in a bubble generator developed for a small TMSR. Annals of Nuclear Energy, 109, 69–81. https://doi.org/10.1016/j.anucene.2017.05.015
Tabei, K., Haruyama, S., Yamaguchi, S., Shirai, H., & Takakusagi, F. (2007). Study of micro bubble generation by a swirl jet. Journal of Environment and Engineering, 2(1), 172–182. https://doi.org/10.1299/jee.2.172
Terasaka, K., Hirabayashi, A., Nishino, T., Fujioka, S., & Kobayashi, D. (2011). Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chemical Engineering Science, 66(14), 3172–3179. https://doi.org/10.1016/j.ces.2011.02.043
Wu, Z. H., Chen, H. B., Dong, Y. M., Mao, H. L., Sun, J. L., Chen, S. F., Craig, V. S. J., & Hu, J. (2008). Cleaning using nanobubbles: Defouling by electrochemical generation of bubbles. Journal of Colloid and Interface Science, 328(1), 10–14. https://doi.org/10.1016/j.jcis.2008.08.064
Xu, Q., Nakajima, M., Ichikawa, S., Nakamura, N., & Shiina, T. (2008). A comparative study of microbubble generation by mechanical agitation and sonication. Innovative Food Science and Emerging Technologies, 9(4), 489–494. https://doi.org/10.1016/j.ifset.2008.03.003
Yin, J., Li, J., Li, H., Liu, W., & Wang, D. (2015). Experimental study on the bubble generation characteristics for an venturi type bubble generator. International Journal of Heat and Mass Transfer, 91, 218–224. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.076
Yoon, R. H. (1993). Microbubble flotation. Minerals Engineering, 6(6), 619–630. https://doi.org/10.1016/0892-6875(93)90116-5
Zhang, H., & Tikekar, R. V. (2021). Air microbubble assisted washing of fresh produce: Effect on microbial detachment and inactivation. Postharvest Biology and Technology, 181, 111687. https://doi.org/10.1016/j.postharvbio.2021.111687
Zhao, L., Mo, Z., Sun, L., Xie, G., Liu, H., Du, M., & Tang, J. (2017). A visualized study of the motion of individual bubbles in a venturi-type bubble generator. Progress in Nuclear Energy, 97, 74–89. https://doi.org/10.1016/j.pnucene.2017.01.004
Zhao, L., Sun, L., Mo, Z., Du, M., Huang, J., Bao, J., Tang, J., & Xie, G. (2019). Effects of the divergent angle on bubble transportation in a rectangular Venturi channel and its performance in producing fine bubbles. International Journal of Multiphase Flow, 114, 192–206. https://doi.org/10.1016/j.ijmultiphaseflow.2019.02.003
Zhao, L., Sun, L., Mo, Z., Tang, J., Hu, L., & Bao, J. (2018). An investigation on bubble motion in liquid flowing through a rectangular Venturi channel. Experimental Thermal and Fluid Science, 97, 48–58. https://doi.org/10.1016/j.expthermflusci.2018.04.009