Afisna, L. P., Juwana, W. E., Indarto, I., Deendarlianto, D., & Nugroho, F. M. (2017). Performance of Porous-Venturi Microbubble Generator for Aeration Process.
Journal of Energy, Mechanical, Material, and Manufacturing Engineering,
2(2), 73–80.
https://doi.org/10.22219/jemmme.v2i2.5054
Bagatur, T. (2014). Evaluation of plant growth with aerated irrigation water using venturi pipe part.
Arabian Journal for Science and Engineering,
39(4), 2525–2533.
https://doi.org/10.1007/s13369-013-0895-4
Basso, A., Hamad, F. A., & Ganesan, P. (2018). Effects of the geometrical configuration of air–water mixer on the size and distribution of microbubbles in aeration systems.
Asia-Pacific Journal of Chemical Engineering,
13(6), e2259.
https://doi.org/10.1002/apj.2259
Baylar, A., Ozkan, F., & Unsal, M. (2010). Using Venturi Tubes in Two-Phase Aeration Processes. Editörler: Mehmet Emin AYDIN. July 2021.
Catrawedarma, I., Deendarlianto, & Indarto. (2020). The performance of airlift pump for the solid particles lifting during the transportation of gas-liquid-solid three-phase flow: A comprehensive research review.
Proc IMechE Part E: J. Process Mechanical Engineering,
0(0), 1–23.
https://doi.org/10.1177/0954408920951728
Catrawedarma, IGNB., Deendarlianto, & Indarto. (2021). Statistical characterization of flow structure of air – water two-phase flow in airlift pump – Bubble generator system.
International Journal of Multiphase Flow,
138(103596), 1–16.
https://doi.org/10.1016/j.ijmultiphaseflow.2021.103596
Deendarlianto, D., Indarto, I., Juwana, W. E., Afisna, L. P., & Nugroho, F. M. (2017). Performance of porous-venturi microbubble generator for aeration process.
Journal of Energy, Mechanical, Material and Manufacturing Engineering,
2(2).
https://doi.org/10.22219/jemmme.v2i2.5054
Ding, G., Li, Z., Chen, J., & Cai, X. (2021). An investigation on the bubble transportation of a two-stage series venturi bubble generator.
Chemical Engineering Research and Design,
174, 345–356.
https://doi.org/10.1016/j.cherd.2021.08.022
Enany, P., Shevchenko, O., & Drebenstedt, C. (2021). Experimental evaluation of airlift performance for vertical pumping of water in underground mines.
Mine Water and the Environment,
40(4), 970–979.
https://doi.org/10.1007/s10230-021-00807-w
Gordiychuk, A., Svanera, M., Benini, S., & Poesio, P. (2016). Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator.
Experimental Thermal and Fluid Science,
70, 51–60.
https://doi.org/10.1016/j.expthermflusci.2015.08.014
Huang, J., Sun, L., Du, M., Liang, Z., Mo, Z., Tang, J., & Xie, G. (2020a). An investigation on the performance of a micro-scale Venturi bubble generator.
Chemical Engineering Journal,
386, 120980.
https://doi.org/10.1016/j.cej.2019.02.068
Huang, J., Sun, L., Liu, H., Mo, Z., Tang, J., Xie, G., & Du, M. (2020b). A review on bubble generation and transportation in Venturi-type bubble generators.
Experimental and Computational Multiphase Flow,
2(3), 123–134.
https://doi.org/10.1007/s42757-019-0049-3
Juwana, W. E., Widyatama, A., Dinaryanto, O., Budhijanto, W., Indarto, & Deendarlianto. (2019). Hydrodynamic characteristics of the microbubble dissolution in liquid using orifice type microbubble generator.
Chemical Engineering Research and Design,
141, 436–448.
https://doi.org/10.1016/j.cherd.2018.11.017
Lee, C. H., Choi, H., Jerng, D. W., Kim, D. E., Wongwises, S., & Ahn, H. S. (2019). Experimental investigation of microbubble generation in the venturi nozzle.
International Journal of Heat and Mass Transfer,
136, 1127–1138.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.040
Li, J., Song, Y., Yin, J., & Wang, D. (2017). Investigation on the effect of geometrical parameters on the performance of a venturi type bubble generator.
Nuclear Engineering and Design,
325(September), 90–96.
https://doi.org/10.1016/j.nucengdes.2017.10.006
Ligus, G., Zajac, D., Masiukiewicz, M., & Anweiler, S. (2019). A new method of selecting the airlift pump optimum efficiency at low submergence ratios with the use of image analysis.
Energies,
12(4).
https://doi.org/10.3390/en12040735
Lim, J. Y., Kim, H. S., Park, S. Y., & Kim, J. H. (2019a). The design of an ejector type microbubble generator for aeration tanks.
Membrane and Water Treatment,
10(4), 307–311.
https://doi.org/10.12989/MWT.2019.10.4.307
Lim, J. Y., Kim, H. S., Park, S. Y., & Kim, J. H. (2019b). Simultaneous nitrification and denitrification by using ejector type microbubble generator in a single reactor.
Environmental Engineering Research,
25(2), 252–257.
https://doi.org/10.4491/eer.2018.427
Lim, Y. S., Ganesan, P., Varman, M., Hamad, F. A., & Krishnasamy, S. (2021). Effects of microbubble aeration on water quality and growth performance of Litopenaeus vannamei in biofloc system.
Aquacultural Engineering,
93, 102159.
https://doi.org/10.1016/j.aquaeng.2021.102159
Liu, C., Tanaka, H., Ma, J., Zhang, L., Zhang, J., Huang, X., & Matsuzawa, Y. (2012). Effect of microbubble and its generation process on mixed liquor properties of activated sludge using Shirasu porous glass (SPG) membrane system.
Water Research,
46(18), 6051–6058.
https://doi.org/10.1016/j.watres.2012.08.032
Liu, C., Tanaka, H., Zhang, J., Zhang, L., Yang, J., Huang, X., & Kubota, N. (2013). Successful application of Shirasu porous glass (SPG) membrane system for microbubble aeration in a biofilm reactor treating synthetic wastewater.
Separation and Purification Technology,
103, 53–59.
https://doi.org/10.1016/j.seppur.2012.10.023
Mawarni, D. I., Juwana, W. E., Catrawedarma, I., Yuana, K. A., Budhijanto, W., Deendarlianto, D., & Indarto, I. (2023). Statistical characterization of bubble breakup flow structures in swirl-type bubble generator systems.
ASEAN Journal of Chemical Engineering,
23(1), 62.
https://doi.org/10.22146/ajche.78558
Sadatomi, M., Kawahara, A., Matsuura, H., & Shikatani, S. (2012). Micro-bubble generation rate and bubble dissolution rate into water by a simple multi-fluid mixer with orifice and porous tube.
Experimental Thermal and Fluid Science,
41, 23–30.
https://doi.org/10.1016/j.expthermflusci.2012.03.002
Sari, E. N., Fiveriati, A., Rusti, N., Rulianto, J., Bhiqman Susanto, R., & Catrawedarma, I. (2024).
Visual and pressure signal investigations on bubble produced by ejector bubble generator. E3S Web of Conferences, 483, 03020.
https://doi.org/10.1051/e3sconf/202448303020
Sun, L., Mo, Z., Zhao, L., Liu, H., Guo, X., Ju, X., & Bao, J. (2017). Characteristics and mechanism of bubble breakup in a bubble generator developed for a small TMSR.
Annals of Nuclear Energy,
109, 69–81.
https://doi.org/10.1016/j.anucene.2017.05.015
Tabei, K., Haruyama, S., Yamaguchi, S., Shirai, H., & Takakusagi, F. (2007). Study of micro bubble generation by a swirl jet.
Journal of Environment and Engineering,
2(1), 172–182.
https://doi.org/10.1299/jee.2.172
Terasaka, K., Hirabayashi, A., Nishino, T., Fujioka, S., & Kobayashi, D. (2011). Development of microbubble aerator for waste water treatment using aerobic activated sludge.
Chemical Engineering Science,
66(14), 3172–3179.
https://doi.org/10.1016/j.ces.2011.02.043
Wu, Z. H., Chen, H. B., Dong, Y. M., Mao, H. L., Sun, J. L., Chen, S. F., Craig, V. S. J., & Hu, J. (2008). Cleaning using nanobubbles: Defouling by electrochemical generation of bubbles.
Journal of Colloid and Interface Science,
328(1), 10–14.
https://doi.org/10.1016/j.jcis.2008.08.064
Xu, Q., Nakajima, M., Ichikawa, S., Nakamura, N., & Shiina, T. (2008). A comparative study of microbubble generation by mechanical agitation and sonication.
Innovative Food Science and Emerging Technologies,
9(4), 489–494.
https://doi.org/10.1016/j.ifset.2008.03.003
Yin, J., Li, J., Li, H., Liu, W., & Wang, D. (2015). Experimental study on the bubble generation characteristics for an venturi type bubble generator.
International Journal of Heat and Mass Transfer,
91, 218–224.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.076
Zhao, L., Mo, Z., Sun, L., Xie, G., Liu, H., Du, M., & Tang, J. (2017). A visualized study of the motion of individual bubbles in a venturi-type bubble generator.
Progress in Nuclear Energy,
97, 74–89.
https://doi.org/10.1016/j.pnucene.2017.01.004
Zhao, L., Sun, L., Mo, Z., Du, M., Huang, J., Bao, J., Tang, J., & Xie, G. (2019). Effects of the divergent angle on bubble transportation in a rectangular Venturi channel and its performance in producing fine bubbles.
International Journal of Multiphase Flow,
114, 192–206.
https://doi.org/10.1016/j.ijmultiphaseflow.2019.02.003
Zhao, L., Sun, L., Mo, Z., Tang, J., Hu, L., & Bao, J. (2018). An investigation on bubble motion in liquid flowing through a rectangular Venturi channel.
Experimental Thermal and Fluid Science,
97, 48–58.
https://doi.org/10.1016/j.expthermflusci.2018.04.009