Parameter Optimisation of a H-type Three-blade Contra-rotating Vertical-axis Wind Turbine at Low Tip-speed Ratio

Document Type : Regular Article

Authors

College of Mechanical Engineering, Xinjiang University, Urumqi 830046, China

Abstract

Renewable energy sources such as wind energy can alleviate climate deterioration and the global energy crisis, and a major piece of equipment for capturing wind energy is the vertical-axis wind turbine (VAWT), with contra-rotating VAWTs (CR-VAWTs) having received focused attention because of their excellent stability. In the study reported here, Taguchi’s method and computational fluid dynamics were used to optimise the four main parameters in the configuration of a three-blade H-type CR-VAWT, i.e. rotor spacing (S), diameter-to-height ratio (D/H), phase angle (α), and rotational direction (r). The optimum CR-VAWT was derived, and its power coefficients were compared with those of a stand-alone VAWT under low tip-speed ratio (TSR). It was found that D/H has the most effect (81.21%) on the CR-VAWT power performance, followed by α (7.37%) and then r (5.83%), with S having the least effect (5.59%). Compared to the stand-alone VAWT, the average power coefficient of the optimum CR-VAWT is much smaller when the TSR is less than 1.25, but the power performance of the latter gradually prevails as the TSR increases. At a TSR of 1.6, the optimum CR-VAWT has an average power factor improvement of 10.6% over the stand-alone VAWT. At the same time, the maximum total torque of the optimum CR-VAWT is only 6% of that of the stand-alone VAWT, giving the CR-VAWT good stability.

Keywords

Main Subjects


Chen, J., Chen, L., Xu, H., Yang, H., Ye, C., & Liu, D. (2016). Performance improvement of a vertical axis wind turbine by comprehensive assessment of an airfoil family. Energy, 114, 318-331. http://dx.doi.org/10.1016/j.energy.2016.08.005
Chen, W. H., Chen, C. Y., Huang, C. Y., & Hwang, C. J. (2017). Power output analysis and optimization of two straight-bladed vertical-axis wind turbines. Applied Energy, 185, 223-232. http://dx.doi.org/10.1016/j.apenergy.2016.10.076
Didane, D. H., Rosly, N., Zulkafli, M. F., & Shamsudin, S. S. (2018). Performance evaluation of a novel vertical axis wind turbine with coaxial contra-rotating concept. Renewable Energy, 115, 353-361. http://dx.doi.org/10.1016/j.renene.2017.08.070
Didane, D. H., Rosly, N., Zulkafli, M. F., & Shamsudin, S. S. (2019). Numerical investigation of a novel contra-rotating vertical axis wind turbine. Sustainable Energy Technologies and Assessments, 31, 43-53. http://dx.doi.org/10.1016/j.seta.2018.11.006
Dong, Z., Wang, X., Zhu, R., Dong, X., & Ai, X. (2022). Improving the accuracy of wind speed statistical analysis and wind energy utilization in the Ningxia Autonomous Region, China. Applied Energy, 320. http://dx.doi.org/10.1016/j.apenergy.2022.119256
Elkhoury, M., Kiwata, T., & Aoun, E. (2015). Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch. Journal of Wind Engineering and Industrial Aerodynamics, 139, 111-123. http://dx.doi.org/10.1016/j.jweia.2015.01.004
Farzadi, R., & Bazargan, M. (2023). 3D numerical simulation of the Darrieus vertical axis wind turbine with J-type and straight blades under various operating conditions including self-starting mode. Energy, 278. http://dx.doi.org/10.1016/j.energy.2023.128040
Hassanpour, M., & Azadani, L. N. (2021). Aerodynamic optimization of the configuration of a pair of vertical axis wind turbines. Energy Conversion and Management, 238. http://dx.doi.org/10.1016/j.enconman.2021.114069
Lee, Y. T., & Lim, H. C. (2015). Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine. Renewable Energy, 83, 407-415. http://dx.doi.org/10.1016/j.renene.2015.04.043
Lei, H., Zhou, D., Bao, Y., Li, Y., & Han, Z. (2017a). Three-dimensional Improved Delayed Detached Eddy Simulation of a two-bladed vertical axis wind turbine. Energy Conversion and Management, 133, 235-248. http://dx.doi.org/10.1016/j.enconman.2016.11.067
Lei, H., Zhou, D., Bao, Y., Chen, C., Ma, N., & Han, Z. (2017b). Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion. Energy, 127, 1-17. http://dx.doi.org/10.1016/j.energy.2017.03.087
Li, Y., Yang, S., Feng, F., & Tagawa, K. (2023). A review on numerical simulation based on CFD technology of aerodynamic characteristics of straight-bladed vertical axis wind turbines. Energy Reports, 9, 4360-4379. http://dx.doi.org/10.1016/j.egyr.2023.03.082
Liao, C. N., & Kao, H. P. (2010). Supplier selection model using Taguchi loss function, analytical hierarchy process and multi-choice goal programming. Computers & Industrial Engineering, 58(4), 571-577. http://dx.doi.org/10.1016/j.cie.2009.12.004
Malicki, Ł., Malecha, Z., Baran, B., & Juszko, R. (2024). Numerical investigation of a novel type of rotor working in a palisade configuration. Energies, 17(13). http://dx.doi.org/10.3390/en17133093
Peng, H. Y., Liu, H. J., & Yang, J. H. (2021). A review on the wake aerodynamics of H-rotor vertical axis wind turbines. Energy, 232. http://dx.doi.org/10.1016/j.energy.2021.121003
Poguluri, S. K., Lee, H., & Bae, Y. H. (2021). An investigation on the aerodynamic performance of a co-axial contra-rotating vertical-axis wind turbine. Energy, 219. http://dx.doi.org/10.1016/j.energy.2020.119547
Radhakrishnan, J., Sridhar, S., Zuber, M., Ng, E. Y. K., & B, S. S. (2023). Design optimization of a Contra-Rotating VAWT: A comprehensive study using Taguchi method and CFD. Energy Conversion and Management, 298. http://dx.doi.org/10.1016/j.enconman.2023.117766
Sanaye, S., & Farvizi, A. (2024). Optimizing a vertical axis wind turbine with helical blades: Application of 3D CFD and Taguchi method. Energy Reports, 12, 2527-2547. http://dx.doi.org/10.1016/j.egyr.2024.08.059
Shen, Z., Gong, S., Xie, G., Lu, H., & Guo, W. (2024). Investigation of the effect of critical structural parameters on the aerodynamic performance of the double darrieus vertical axis wind turbine. Energy, 290. http://dx.doi.org/10.1016/j.energy.2023.130156
Song, L., Fu, S., Dai, S., Zhang, M., & Chen, Y. (2016). Distribution of drag force coefficient along a flexible riser undergoing VIV in sheared flow. Ocean Engineering, 126, 1-11. http://dx.doi.org/10.1016/j.oceaneng.2016.08.022
Sun, S. Y., Liu, H. J., & Peng, H. Y. (2023). Power performance and self-starting features of H-rotor and helical vertical axis wind turbines with different airfoils in turbulence. Energy Conversion and Management, 292. http://dx.doi.org/10.1016/j.enconman.2023.117405
Wang, Y., Shen, S., Li, G., Huang, D., & Zheng, Z. (2018). Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes. Renewable Energy, 126, 801-818. http://dx.doi.org/10.1016/j.renene.2018.02.095
Zamani, M., Maghrebi, M. J., & Varedi, S. R. (2016). Starting torque improvement using J-shaped straight-bladed Darrieus vertical axis wind turbine by means of numerical simulation. Renewable Energy, 95, 109-126. http://dx.doi.org/10.1016/j.renene.2016.03.069
Zanforlin, S., & Nishino, T. (2016). Fluid dynamic mechanisms of enhanced power generation by closely spaced vertical axis wind turbines. Renewable Energy, 99, 1213-1226. http://dx.doi.org/10.1016/j.renene.2016.08.015
Zhang, Q., Bashir, M., Miao, W., Liu, Q., Li, C., Yue, M., & Wang, P. (2023). Aerodynamic analysis of a novel pitch control strategy and parameter combination for vertical axis wind turbines. Renewable Energy, 216. http://dx.doi.org/10.1016/j.renene.2023.119089
Zhang, T., Wang, Z., Huang, W., Ingham, D., Ma, L., & Pourkashanian, M. (2020). A numerical study on choosing the best configuration of the blade for vertical axis wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 201. http://dx.doi.org/10.1016/j.jweia.2020.104162
Zhang, Y., Li, Q. a., Zhu, X., Song, X., Cai, C., Zhou, T., Guo, Z. (2022). Effect of the bionic blade on the flow field of a straight-bladed vertical axis wind turbine. Energy, 258. http://dx.doi.org/10.1016/j.energy.2022.124834
Zheng, P., Zhang, H., Zhang, Z., Salman, W., & Abdelrahman, M. (2024). Parameter optimization method of contra-rotating vertical axis wind turbine: Based on numerical simulation and response surface. Journal of Cleaner Production, 435. http://dx.doi.org/10.1016/j.jclepro.2023.140475
Zhu, H., Hao, W., Li, C., Luo, S., Liu, Q., & Gao, C. (2021). Effect of geometric parameters of Gurney flap on performance enhancement of straight-bladed vertical axis wind turbine. Renewable Energy, 165, 464-480. http://dx.doi.org/10.1016/j.renene.2020.11.027