Ariga, I., Kasai, N., Masuda, S., Watanabe, Y., & Watanabe, I. (1983). The effect of inlet distortion on the performance characteristics of a centrifugal compressor.
Journal of Engineering for Gas Turbines and Power, 105(2), 223–230.
https://doi.org/10.1115/1.3227406
Broatch, A., Ruiz, S., J. García-Tíscar, & Roig, F. (2018). On the influence of inlet elbow radius on recirculating backflow, whoosh noise and efficiency in turbocharger compressors.
Experimental Thermal & Fluid Science, 96, 224–233.
https://doi.org/10.1016/j.expthermflusci.2018.03.011
Djodikusumo, I., Diasta, I. N., & Sanjaya Awaluddin, I. (2016). Geometric modeling of a propeller turbine runner using ANSYS BladeGen, meshing using ANSYS turboGrid and fluid dynamic simulation using ANSYS Fluent.
Applied Mechanics and Materials, 842, 164–177.
https://doi.org/10.4028/www.scientific.net/AMM.842.164
Engeda, A., Kim, Y., Aungier, R., & Direnzi, G. (2003). The inlet flow structure of a centrifugal compressor stage and its influence on the compressor performance.
Journal of Fluids Engineering,
125(5), 779–785.
https://doi.org/10.1115/1.1601255
Grimaldi, A., & Michelassi, V. (2019). The impact of inlet distortion and reduced frequency on the performance of centrifugal compressors.
Journal of Engineering for Gas Turbines and Power, 141(2), 1–9.
https://doi.org/10.1115/1.4040907
Han, F. H., Mao, Y. J., & Tan, J. J. (2016). Influences of flow loss and inlet distortions from radial inlets on the performances of centrifugal compressor stages.
Journal of Mechanical Science & Technology, 30(10), 4591–4599.
https://doi.org/10.1007/s12206-016-0930-y
Jahani, Z., Khaleghi, Z., & Tabejamaat, S. (2022). Using tip injection to stability enhancement of a transonic centrifugal impeller with inlet distortion.
Journal of Applied Fluid Mechanics, 15(6), 1815–1824.
https://doi.org/10.47176/jafm.15.06.1089
Jiang, C. L., & Zhu, X. Y. (2022). Structural optimization design and internal flow characteristics analysis of axial flow fan.
Journal of Drainage and Irrigation Machinery Engineering, 40(7), 707-713.
https://doi.org/10.3969/j.issn.1674-8530.20.0235
Kammerer, A., & Abhari, R. S. (2009). Blade forcing function and aerodynamic work measurements in a high speed centrifugal compressor with inlet distortion.
Journal of Engineering for Gas Turbines & Power, 132(9), 95–105.
https://doi.org/10.1115/1.4000614
Kim, Y., Engeda, A., Aungier, R., & Direnzi, G. (2001). The influence of inlet flow distortion on the performance of a centrifugal compressor and the development of an improved inlet using numerical simulations.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 215(3), 323–338.
https://doi.org/10.1243/0957650011538550
Li, C., Bai, S. Z., Li, Y. Z., Zhang, J. J., & Zhang, J. M. (2020). Effects of curved tube intake on centrifugal compressor efficiency.
Internal Combustion Engine & Powerplant, 37(3), 26–31.
https://doi.org/10.19471/j.cnki.1673-6397.2020.06.005
Li, D., Yang, C., Zhou, M., Zhu, Z. F., & Wang, H. (2012). Numerical and experimental research on different inlet configurations of high speed centrifugal compressor.
Science China (Technological Sciences), 55, 174–181.
https://doi.org/10.1007/s11431-011-4635-2
Li, M. Y., Lu, Y. J., Gong, Z.Q., & Yuan, W. (2006). PIV investigation of the internal flow in an axial flow compressor rotor under inlet distortion.
Journal of Aerospace Power, 21(003), 461–466.
https://doi.org/CNKI:SUN:HKDI.0.2006-03-004
Li, W. X., Li, Z. G., Han, W., Li, D. C., Yan, S. N., & Zhou, J. P. (2025). Study of the flow characteristics of pumped media in the confined morphology of a ferrofluid pump with annular microscale constraints.
Journal of Fluids Engineering,
147(2), 021201.
https://doi.org/10.1115/1.4066486
Li, W. X., Li, Z. G., Han, W., Li, Y. B., Yan, S. N., Zhao, Q., & Gu, Z. Y. (2023a). Pumping-velocity variation mechanisms of a ferrofluid micropump and structural optimization for reflow inhibition.
Physics of Fluids,
35(5), 052005.
https://doi.org/10.1063/5.0149130
Li, W. X., Li, Z. G., Han, W., Tan, S. W., Yan, S. N., Wang, D. W., & Yang, S. Q. (2023b). Time-mean equation and multi-field coupling numerical method for low-Reynolds-number turbulent flow in ferrofluid.
Physics of Fluids,
35(12), 125145.
https://doi.org/10.1063/5.0179961
Li, X., Huang, N., He, K., Tong, D., Zhang, Y.L., & Zhang, J. (2024). On erosion wear of flat specimens incorporating roughness angle correction.
Physics of Fluids,
36, 109102.
https://doi.org/10.1063/5.0226359
Nili-Ahmadabadi, M., Hajilouy-Benisi, A., Durali, M., & Ghadak, F. (2008). Investigation of a centrifugal compressor and study of the area ratio and tip clearance effects on performance.
Journal of Thermal Science, 17(4), 314–323.
https://doi.org/10.1007/s11630-008-0314-1
Sheoran, Y., Bouldin, B., & Krishnan, P. M. (2011). Compressor performance and operability in swirl distortion.
Journal of Turbomachinery, 134(4), 041008.
https://doi.org/10.1115/GT2010-22777
Sun, Z., Wang, B., Zheng, X., Kawakubo, T., & Numakura, R. (2020). Effect of bent inlet pipe on the flow instability behavior of centrifugal compressors.
Chinese Journal of Aeronautics, 33(8), 2099–2109.
https://doi.org/10.1016/j.cja.2020.02.013
Tian, H. Y., Tong, D., Liu, Y., Xing, W. D., Chen, D. F., & Gao, C. (2021a). The effect of blade trailing edge swept on the performance of centrifugal compressor. Journal of Engineering Thermophysics, 42, 399–406.
Tian, H. Y., Hou, K., Tong, D., & Liu, X.Y. (2021b). Effect of inlet end-wall guide vanes on the performance of centrifugal compressor.
Chinese Internal Combustion Engine Engineering, 42(6), 95–102.
https://doi.org/10.13949/j.cnki.nrjgc.2021.06.013
Tian, Y. B., Tang, Y. H., Wang, Z. H., & Xi, G. (2017, June 26-30).
Influence of adjustable inlet guide vanes on the performance characteristics of a shrouded centrifugal compressor. Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Charlotte, NC, USA. V02CT44A020.
https://doi.org/10.1115/GT2017-63918
Toge, T. D., & Pradeep, A. M. (2017). Experimental investigation of stall inception of a low speed contra rotating axial flow fan under circumferential distorted flow condition.
Aerospace Science and Technology, 70, 534–548.
https://doi.org/10.1016/j.ast.2017.08.041
Tong, D., Tian, H. Y., Liu, X. Y., Liu. Y., Gao, C., & Li, X. (2021). Effect of inlet bend pipe on the centrifugal compressor performance and its optimization design.
Acta Armamentarii, 42(4), 9.
https://doi.org/10.3969/j.issn.1000-1093.2021.04.004
Wang, H. Y., Yang, D. F., Zhu, Z. C., Zhang, H. J., & Zhang, Q. (2023). Effect of interstage pipeline on the performance of two-stage centrifugal compressors for automotive hydrogen fuel cells.
Applied Science-Basel, 13(1), 503.
https://doi.org/10.3390/app13010503
Xin, J. C., Wang, X. F., & Liu, H. T. (2016). Numerical investigation of variable inlet guide vanes with trailing-edge dual slots to decrease the aerodynamic load on centrifugal compressor impeller.
Advances in Mechanical Engineering, 8(3), 1–14.
https://doi.org/10.1177/1687814016640653
Xu, Z. L., Gao, R. Z., & Da, X. Y. (2018). Assessment and measurement of total pressure distortion based on five-hole-probe for S-shaped inlet.
Journal of Experiments in Fluid Mechanics, 32(4), 78–86.
https://doi.org/CNKI:SUN:LTLC.0.2018-04-010
Yan, C., Yu, J., Xu, J. L., Fan, J. J., & Gao, R. Z. (2011). On the achievements and prospects for the methods of computational fluid dynamics.
Advances in Mechanics, 41(5), 562–589.
https://doi.org/10.6052/1000-0992-2011-5-lxjzj2010-082