Effect of Gate Opening Height on the Hydraulic Jump Characteristics in an Open Channel

Document Type : Regular Article

Authors

1 Department of Civil Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, 440010, India

2 Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, 440010, India

Abstract

Hydraulic jump is often used to dissipate energy of flow in open channels. Despite extensive study on hydraulic jump, effects of tail gate operation on hydraulic jump remains underexplored in the standard literature. This research investigates the effects of sluice gate opening (SGO) and tail gate opening (TGO) on hydraulic jump characteristics using experiments, theoretical analysis, and numerical simulations. The study is carried out for Froude Number range of 1.58 - 4.48, SGO range of 0.011 – 0.020 m and TGO range of 0.023 – 0.030 m. The results show that increasing sluice gate opening (SGO) primarily affects the hydraulic jump location, moving it closer to the sluice gate and reducing upstream depth ( ), while downstream depth ( ) remains almost same. On the other hand, there is substantial increase in downstream depth (  and the location of hydraulic jump shifts towards sluice gate with decreasing tail gate opening (TGO). Locations of the hydraulic jump are estimated using theoretical equation, experiments and numerical simulations. In addition, energy dissipation analysis reveals that TGO is more effective than SGO in dissipating energy through hydraulic jumps.

Keywords

Main Subjects


Babaali, H., Shamsai, A., & Vosoughifar, H. R. (2014). Computational modeling of the hydraulic jump in the stilling basin with convergence walls using CFD codes. Arabian Journal for Science and Engineering, 40(2), 381–395. https://doi.org/10.1007/s13369-014-1466-z
Bayón, A., Valero, D., García-Bartual, R., Vallés-Morán, F. J., & López-Jiménez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling and Software, 80, 322–335. https://doi.org/10.1016/j.envsoft.2016.02.018
Castro-Orgaz, O., & Hager, W. H. (2009). Classical hydraulic jump: Basic flow features. Journal of Hydraulic Research, 47(6), 744–754. https://doi.org/10.3826/jhr.2009.3610
Chanson, H. )2009(. Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. European Journal of Mechanics-B/Fluids28(2), pp.191-210. https://doi.org/10.1016/j.euromechflu.2008.06.004
Chern, M. J., & Syamsuri, S. (2013). Effect of corrugated bed on hydraulic jump characteristic using SPH method. Journal of Hydraulic Engineering, 139(2), 221–232. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000618
Chow, V. T. (1959). Open channel hydraulics. McGraw-Hill Book Co., Inc.
FLOW-3D® Version 2023R1 [Computer software]. (2023). Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com
FLOW-3D® Version 2023R1 Users Manual. (2023). Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com
Gharangik, A. M., & Chaudhry, M. H. (1991). Numerical simulation of hydraulic jump. Journal of Hydraulic Engineering, 117(9), 1195–1211. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:9(1195)
Gumus, V., Simsek, O., Soydan, N. G., Akoz, M. S., & Kirkgoz, M. S. (2016). Numerical modeling of submerged hydraulic jump from a sluice gate. Journal of Irrigation and Drainage Engineering, 142(1), 04015037. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000948
Gupta, U. P., & Ojha, C. S. P. (2013). Minimising interference of hydraulic jump with hydraulic gates. ISH Journal of Hydraulic Engineering, 19(3), 179–185. https://doi.org/10.1080/09715010.2013.796689
Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research, 27(5), 565–585. https://doi.org/10.1080/00221688909499111
Hafnaoui, M. A., & Debabeche, M. (2021). Numerical modeling of the hydraulic jump location using 2D Iber software. Modeling Earth Systems and Environment, 7(3), 1939–1946. https://doi.org/10.1007/s40808-020-00942-3
Kim, Y., Choi, G., Park, H., & Byeon, S. (2015). Hydraulic jump and energy dissipation with sluice gate. Water MDPI, 7(9), 5115–5133. https://doi.org/10.3390/w7095115
Mirzaei, H., & Tootoonchi, H. (2020). Experimental and numerical modeling of the simultaneous effect of sluice gate and bump on hydraulic jump. Modeling Earth Systems and Environment, 6(4), 1991–2002. https://doi.org/10.1007/s40808-020-00835-5
Mnassri, S., & Triki, A. (2022). Numerical investigation towards the improvement of hydraulic-jump prediction in rectangular open-channels. ISH Journal of Hydraulic Engineering, 28(2), 135–142. https://doi.org/10.1080/09715010.2020.1836684
Nandi, B., Das, S., & Mazumdar, A. (2020). Experimental analysis and numerical simulation of hydraulic jump. IOP Conference Series: Earth and Environmental Science, 505, 012024. https://doi.org/10.1088/1755-1315/505/1/012024
Ohtsu, I., & Yasuda, Y. (1994). Characteristics of supercritical flow below sluice gate. Journal of Hydraulic Engineering, 120(3), 332–346. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:3(332)
Paik, J., & Kim, B. (2023). Large eddy simulation of a steady hydraulic jump at Fr = 7.3. Journal of Korea Water Resources Association, 56)1(, 1049–1058. https://doi.org/10.3741/JKWRA.2023.56.S-1.1049
Rajaratnam, N. (1977). Free flow immediately below sluice gates. Journal of the Hydraulics Division, 103(4), 345–351. https://doi.org/10.1061/JYCEAJ.0004729
Retsinis, E., & Papanicolaou, P. (2020). Numerical and experimental study of classical hydraulic jump. Water, 12(6), 1766. https://doi.org/10.3390/w12061766
Roushangar, K., Ghasempour, R., & Valizadeh, R. (2018). Effect of channel boundary conditions in predicting hydraulic jump characteristics using an ANFIS-based approach. Journal of Applied Fluid Mechanics, 11(3), 555-565. https://doi.org/10.29252/jafm.11.03.27933
Singh, U. K., & Roy, P. (2022). Energy dissipation in hydraulic jumps using triple screen layers. Applied Water Science, 13(1). https://doi.org/10.1007/s13201-022-01824-y
Singha, S. B., Bhattacharjee, J. K., & Ray, A. K. (2005). Hydraulic jump in one-dimensional flow. The European Physical Journal B, 48(3), 417–426. https://doi.org/10.1140/epjb/e2005-00404-0
Subramanya, K. (2019). Flow in open channels. Tata McGraw-Hill Education.
Wang, H., & Chanson, H. (2015). Experimental study of turbulent fluctuations in hydraulic jumps. Journal of Hydraulic Engineering, 141(7), 04015010. http://doi.org/10.1061/(ASCE)HY.1943-7900.0001010
Yıldız, A., Martı, A.İ., Yarar, A., & Yılmaz, V. (2020). Determination of position of hydraulic jump in a flume by using CFD and comparison with experiential results. Romanian Journal of Ecology and Environmental Chemistry. https://doi.org/10.21698/rjeec.2020.211