Agrawal, S., Khurana, G., Samanta, D., & Dhar, P. (2023). Droplet post-impact regimes on concave contours.
The European Physical Journal. E, Soft Matter,
46(10), 90.
https://doi.org/10.1140/epje/s10189-023-00349-9
Chen, B. W., Wang, B., Mao, F., Tian, R. F., & Lu, C. (2020). Analysis of liquid droplet impacting on liquid film by CLSVOF.
Annals of Nuclear Energy,
143.
https://doi.org/10.1016/j.anucene.2020.107468
Chen, D., Feng, A., Wu, F., Wang, T., & Lin, Z. (2024). Experimental study of the collision behavior between moving and sessile droplets on curved surfaces.
Chemical Engineering Science,
299.
https://doi.org/10.1016/j.ces.2024.120530
Elhadi Ibrahim, M., & Medraj, M. (2019). Water droplet erosion of wind turbine blades: mechanics, testing, modeling and future perspectives.
Materials,
13(1).
https://doi.org/10.3390/ma13010157
Fallah K, S., Passandideh-Fard, M., & Niazmand, H. (2016). Simulation of a single droplet impact onto a thin liquid film using the lattice Boltzmann method.
Journal of Molecular Liquids,
222, 1172-1182.
https://doi.org/10.1016/j.molliq.2016.07.092
Hong, W., & Wang, Y. (2017). A coupled level set and volume-of-fluid simulation for heat transfer of the double droplet impact on a spherical liquid film.
Numerical Heat Transfer, Part B: Fundamentals,
71(4), 359-371.
https://doi.org/10.1080/10407790.2017.1293960
Hu, Z., Chu, F., & Lin, Y. (2022). Contact Time of droplet impact on inclined ridged superhydrophobic surfaces.
Langmuir: The ACS Journal of Surfaces Colloids,
38(4), 1540-1549.
https://doi.org/10.1021/acs.langmuir.1c03001
Hu, Z., Chu, F., & Shan, H. (2024). Understanding and utilizing droplet impact on superhydrophobic surfaces: phenomena, mechanisms, regulations, applications, and beyond.
Advanced Materials,
36(11), e2310177.
https://doi.org/10.1002/adma.202310177
Kshitiz, K, S., & Song-Charng, K. (2022). Numerical study on the Leidenfrost behavior of a droplet stream impinging on a heated wall.
Physical Review. E,
106(1-2), 015106.
https://doi.org/10.1103/PhysRevE.106.015106
Li, X. Y., Ma, X. D., & Lan, Z. (2010). Dynamic Behavior of the water droplet impact on a textured hydrophobic/superhydrophobic surface: The effect of the remaining liquid film arising on the pillars' tops on the contact time.
Langmuir,
26(7), 4831-4838.
https://doi.org/10.1021/la903603z
Liang, G. T., Li, L., Chen, L. Z., Zhou, S. H., & Shen, S. Q. (2021). Impact of droplet on flowing liquid film: Experimental and numerical determinations.
International Communications in Heat and Mass Transfer,
126.
https://doi.org/10.1016/j.icheatmasstransfer.2021.105459
Lin, S. L., Zhang, H., Wang, L. C., Lee, Y. Y., & Huang, C. E. (2023). Effects of fuel injection system and exhaust gas catalytic treatments on PAH emissions from motorcycles.
Environmental Science Pollution Research International,
30(5), 13359-13371.
https://doi.org/10.1007/s11356-022-23042-4
Lin, Z., Zhang, H., Tao, J. Y., Jin, Y. Z., & Zhu, Z. H. (2022). Numerical Analysis of droplet impact on the convex surface with liquid film.
Langmuir,
38(24), 7593-7602.
https://doi.org/10.1021/acs.langmuir.2c00742
Liu, X., Liu, L., Hu, Z., Li, R., & Wang, Z. (2024). Impact and freezing characteristics of deionized water droplets on cold curved surfaces.
International Journal of Fluid Engineering,
1(4).
https://doi.org/10.1063/5.0226821
Liu, Y. H., Andrew, M., Li, J., Yeomans, J. M., & Wang, Z. K. (2015). Symmetry breaking in drop bouncing on curved surfaces.
Nature Communications,
6(1).
https://doi.org/10.1038/ncomms10034
Lu, J., Qian, L., Liu, X., & Choi, Y. (2024). Characterization of energy loss in jet mechanism of a Pelton turbine.
International Journal of Fluid Engineering,
1(3).
https://doi.org/10.1063/5.0209402
Ochowiak, M., Matuszak, M., & Włodarczak, S. (2017). The analysis of pneumatic atomization of Newtonian and non-Newtonian fluids for different medical nebulizers.
Drug Development Industrial Pharmacy,
43(12), 1999-2010.
https://doi.org/10.1080/03639045.2017.1358274
Okawa, T., Shiraishi, T., & Mori, T. (2006). Production of secondary drops during the single water drop impact onto a plane water surface.
Experiments in Fluids,
41(6), 965-974.
https://doi.org/10.1007/s00348-006-0214-x
Palmetshofer, P., Geppert, A. K., Steigerwald, J., Arcos, M. T., & Weigand, B. (2024). Thermocapillary central lamella recess during droplet impacts onto a heated wall.
Scientific Reports,
14(1), 1102.
https://doi.org/10.1038/s41598-024-51382-3
Peng, X., Wang, T., Jia, F., Sun, K., Li, Z., & Che, Z. (2023). Singular jets during droplet impact on superhydrophobic surfaces.
Journal of Colloid Interface Science,
651, 870-882.
https://doi.org/10.1016/j.jcis.2023.07.186
Sussman, M. (2000). A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows.
Journal of Computational Physics,
162, 301-337.
https://doi.org/10.1006/jcph.2000.6537
Tao, J. Y., Chen, D. S., Lin, Z., & Zhu, Z. C. (2022). Numerical simulation analysis of symmetric impact of two droplets on a liquid film.
Physics of Fluids,
34(9).
https://doi.org/10.1063/5.0110554
Theodorakakos, A., & Bergeles, G. (2004). Simulation of sharp gas–liquid interface using VOF method and adaptive grid local refinement around the interface.
International Journal for Numerical Methods in Fluids, 45(4), 421-439.
https://doi.org/https://doi.org/10.1002/fld.706
Tsutsumi, A., C, Akutsu, S., K, Iwamiya, Y., & Terada, I., C. (2023). Antimicrobial surface processing of polymethyl methacrylate denture base resin using a novel silica-based coating technology.
Clinical oral Investigations,
27(3), 1043-1053.
https://doi.org/10.1007/s00784-022-04670-z
Wang, A. B., & Chen, C. C. (2000). Splashing impact of a single drop onto very thin liquid films.
Physics of Fluids,
12(9), 2155-2158.
https://doi.org/10.1063/1.1287511
Yada, S., Lacis, U., Wijngaart, W., Lundell, F., Amberg, G., & Bagheri, S. (2022). Droplet impact on asymmetric hydrophobic microstructures.
Langmuir : The ACS Journal of Surfaces Colloids,
38(26), 7956-7964.
https://doi.org/10.1021/acs.langmuir.2c00561
Yang, L., Xiang, J., Kang, H., Wang, X., Wen, C., & Rao, Z. (2024). Numerical investigations on compressible thermal flows in high-speed water entry.
International Journal of Fluid Engineering,
1(3).
https://doi.org/10.1063/5.0219941