Numerical Analysis of Droplet Impact on Liquid Film with Different Surface Structures

Document Type : Regular Article

Authors

Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China

10.47176/jafm.18.6.3149

Abstract

The collision of droplets with a liquid film is a common occurrence in daily generation . This study uses the CLSVOF approach to analyze a droplet's effect on a liquid film with various trapezoidal surface structures. It analyzes the spray morphology, velocity field, pressure distribution, and the characteristic arguments of the crown and cavity under different trapezoidal widths, heights, and hypotenuse lengths. The findings suggested that growing the height promotes spatter, the collision of droplet with liquid film forms mushroom-shaped velocity region and a zero-velocity region, while generating symmetrical vortices. The area above the trapezoid is identified as a high-pressure region, with its size increasing as the hypotenuse length and trapezoidal width rise and decreasing as the height increases. Three localized high-pressure regions are observed during the impact procedure, and the crown diameter grows with greater height. The bottom diameter of the cavity is influenced by the height, width, and hypotenuse length, with the hypotenuse length exerting the most significant effect. This study provides a theoretical foundation for applying droplet and liquid film collisions. 

Keywords

Main Subjects


Agrawal, S., Khurana, G., Samanta, D., & Dhar, P. (2023). Droplet post-impact regimes on concave contours. The European Physical Journal. E, Soft Matter, 46(10), 90. https://doi.org/10.1140/epje/s10189-023-00349-9
Alessandra, P. d. S., Fabiana, R. C., & Alexandre, R. M. F (2023). Spray-chilling system in the initial cooling process of swine half carcasses. Meat Science, 204, 109256. https://doi.org/10.1016/j.meatsci.2023.109256
Bird, J., Dhiman, R., & Kwon, H. (2013). Reducing the contact time of a bouncing drop. Nature, 503(7476), 385-388. https://doi.org/10.1038/nature12740
Chen, B. W., Wang, B., Mao, F., Tian, R. F., & Lu, C. (2020). Analysis of liquid droplet impacting on liquid film by CLSVOF. Annals of Nuclear Energy, 143. https://doi.org/10.1016/j.anucene.2020.107468
Chen, D., Feng, A., Wu, F., Wang, T., & Lin, Z. (2024). Experimental study of the collision behavior between moving and sessile droplets on curved surfaces. Chemical Engineering Science, 299. https://doi.org/10.1016/j.ces.2024.120530
Elhadi Ibrahim, M., & Medraj, M. (2019). Water droplet erosion of wind turbine blades: mechanics, testing, modeling and future perspectives. Materials, 13(1). https://doi.org/10.3390/ma13010157
Fallah K, S., Passandideh-Fard, M., & Niazmand, H. (2016). Simulation of a single droplet impact onto a thin liquid film using the lattice Boltzmann method. Journal of Molecular Liquids, 222, 1172-1182. https://doi.org/10.1016/j.molliq.2016.07.092
Guo, Y., Chen, G., Shen, S., & Zhang, J. (2015). Double droplets simultaneous impact on liquid film. IOP Conference Series: Materials Science and Engineering, 88. https://doi.org/10.1088/1757-899x/88/1/012016
Guo, Y. L., Wang, F., Gong, L. Y., & Shen, S. Q. (2021). Numerical study of oblique droplet impact on a liquid film. European Journal of Mechanics - B/Fluids, 85, 386-396. https://doi.org/10.1016/j.euromechflu.2020.07.006
Hirt, C. W. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. https://doi.org/https://doi.org/10.1016/0021-9991(81)90145-5.
Hong, W., & Wang, Y. (2017). A coupled level set and volume-of-fluid simulation for heat transfer of the double droplet impact on a spherical liquid film. Numerical Heat Transfer, Part B: Fundamentals, 71(4), 359-371. https://doi.org/10.1080/10407790.2017.1293960
Hu, Z., Chu, F., & Lin, Y. (2022). Contact Time of droplet impact on inclined ridged superhydrophobic surfaces. Langmuir: The ACS Journal of Surfaces Colloids, 38(4), 1540-1549. https://doi.org/10.1021/acs.langmuir.1c03001
Hu, Z., Chu, F., & Shan, H. (2024). Understanding and utilizing droplet impact on superhydrophobic surfaces: phenomena, mechanisms, regulations, applications, and beyond. Advanced Materials, 36(11), e2310177. https://doi.org/10.1002/adma.202310177
Kshitiz, K, S., &  Song-Charng, K. (2022). Numerical study on the Leidenfrost behavior of a droplet stream impinging on a heated wall. Physical Review. E, 106(1-2), 015106. https://doi.org/10.1103/PhysRevE.106.015106
Li, X. Y., Ma, X. D., & Lan, Z. (2010). Dynamic Behavior of the water droplet impact on a textured hydrophobic/superhydrophobic surface: The effect of the remaining liquid film arising on the pillars' tops on the contact time. Langmuir, 26(7), 4831-4838. https://doi.org/10.1021/la903603z
Liang, G. T., Li, L., Chen, L. Z., Zhou, S. H., & Shen, S. Q. (2021). Impact of droplet on flowing liquid film: Experimental and numerical determinations. International Communications in Heat and Mass Transfer, 126. https://doi.org/10.1016/j.icheatmasstransfer.2021.105459
Lin, S. L., Zhang, H., Wang, L. C., Lee, Y. Y., & Huang, C. E. (2023). Effects of fuel injection system and exhaust gas catalytic treatments on PAH emissions from motorcycles. Environmental Science Pollution Research International, 30(5), 13359-13371. https://doi.org/10.1007/s11356-022-23042-4
Lin, Z., Zhang, H., Tao, J. Y., Jin, Y. Z., & Zhu, Z. H. (2022). Numerical Analysis of droplet impact on the convex surface with liquid film. Langmuir, 38(24), 7593-7602. https://doi.org/10.1021/acs.langmuir.2c00742
Liu, X., Liu, L., Hu, Z., Li, R., & Wang, Z. (2024). Impact and freezing characteristics of deionized water droplets on cold curved surfaces. International Journal of Fluid Engineering, 1(4). https://doi.org/10.1063/5.0226821
Liu, Y. H., Andrew, M., Li, J., Yeomans, J. M., & Wang, Z. K. (2015). Symmetry breaking in drop bouncing on curved surfaces. Nature Communications, 6(1). https://doi.org/10.1038/ncomms10034
Lu, J., Qian, L., Liu, X., & Choi, Y. (2024). Characterization of energy loss in jet mechanism of a Pelton turbine. International Journal of Fluid Engineering, 1(3). https://doi.org/10.1063/5.0209402
Manzello, S. L., & Yang, J. C. (2002). An experimental study of a water droplet impinging on a liquid surface. Experiments in Fluids, 32(5), 580-589. https://doi.org/10.1007/s00348-001-0401-8
Ochowiak, M., Matuszak, M., & Włodarczak, S. (2017). The analysis of pneumatic atomization of Newtonian and non-Newtonian fluids for different medical nebulizers. Drug Development Industrial Pharmacy, 43(12), 1999-2010. https://doi.org/10.1080/03639045.2017.1358274
Okawa, T., Shiraishi, T., & Mori, T. (2006). Production of secondary drops during the single water drop impact onto a plane water surface. Experiments in Fluids, 41(6), 965-974. https://doi.org/10.1007/s00348-006-0214-x
Olsson, E., & Kreiss, G. (2005). A conservative level set method for two phase flow. Journal of Computational Physics, 210(1), 225-246. https://doi.org/10.1016/j.jcp.2005.04.007
Olsson, E., Kreiss, G., & Zahedi, S. (2007). A conservative level set method for two phase flow II. Journal of Computational Physics, 225(1), 785-807. https://doi.org/10.1016/j.jcp.2006.12.027
Osher, S. J. (1988). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79, 12-49. https://doi.org/10.1016/0021-9991(88)90002-2
Palmetshofer, P., Geppert, A. K., Steigerwald, J., Arcos, M. T., & Weigand, B. (2024). Thermocapillary central lamella recess during droplet impacts onto a heated wall. Scientific Reports, 14(1), 1102. https://doi.org/10.1038/s41598-024-51382-3
Panzade, P., Wagh, A., Harale, P., & Bhilwade, S. (2024). Pharmaceutical cocrystals: a rising star in drug delivery applications. Journal of Drug Targeting, 32(2), 115-127. https://doi.org/10.1080/1061186x.2023.2300690
Peng, X., Wang, T., Jia, F., Sun, K., Li, Z., & Che, Z. (2023). Singular jets during droplet impact on superhydrophobic surfaces. Journal of Colloid Interface Science, 651, 870-882. https://doi.org/10.1016/j.jcis.2023.07.186
Rajendran, S., Jog, M. A., & Manglik, R. M. (2023). Predicting the Splash of a drop impacting a thin liquid film. Langmuir : The ACS Journal of Surfaces, 39(41), 14764-14773. https://doi.org/10.1021/acs.langmuir.3c02185
Shi, J., Gong, L., Zhang, T., & Sun, S. (2022). Study of the Seawater desalination performance by electrodialysis. Membranes, 12(8). https://doi.org/10.3390/membranes12080767
Sussman, M. (2000). A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics, 162, 301-337. https://doi.org/10.1006/jcph.2000.6537
Tao, J. Y., Chen, D. S., Lin, Z., & Zhu, Z. C. (2022). Numerical simulation analysis of symmetric impact of two droplets on a liquid film. Physics of Fluids, 34(9). https://doi.org/10.1063/5.0110554
Theodorakakos, A., & Bergeles, G. (2004). Simulation of sharp gas–liquid interface using VOF method and adaptive grid local refinement around the interface. International Journal for Numerical Methods in Fluids, 45(4), 421-439. https://doi.org/https://doi.org/10.1002/fld.706
Tsutsumi, A., C, Akutsu, S., K, Iwamiya, Y., & Terada, I., C. (2023). Antimicrobial surface processing of polymethyl methacrylate denture base resin using a novel silica-based coating technology. Clinical oral Investigations, 27(3), 1043-1053. https://doi.org/10.1007/s00784-022-04670-z
Wal, R. V., Berger, G. M., & Mozes, S. D. (2005). The splash/non-splash boundary upon a dry surface and thin fluid film. Experiments in Fluids, 40(1), 53-59. https://doi.org/10.1007/s00348-005-0045-1
Wang, A. B., & Chen, C. C. (2000). Splashing impact of a single drop onto very thin liquid films. Physics of Fluids, 12(9), 2155-2158. https://doi.org/10.1063/1.1287511
Yada, S., Lacis, U., Wijngaart, W., Lundell, F., Amberg, G., & Bagheri, S. (2022). Droplet impact on asymmetric hydrophobic microstructures. Langmuir : The ACS Journal of Surfaces Colloids, 38(26), 7956-7964. https://doi.org/10.1021/acs.langmuir.2c00561
Yang, L., Xiang, J., Kang, H., Wang, X., Wen, C., & Rao, Z. (2024). Numerical investigations on compressible thermal flows in high-speed water entry. International Journal of Fluid Engineering, 1(3). https://doi.org/10.1063/5.0219941
Yonemoto, Y., Tashiro, K., Shimizu, K., & Kunugi, T. (2022). Predicting the splash of a droplet impinging on solid substrates. Scientific Reports, 12(1), 5093. https://doi.org/10.1038/s41598-022-08852-3
Zanin, A., Neves, D. C., & Teodoro, L. (2022). Reduction of pesticide application via real-time precision spraying. Scientific Reports, 12(1), 5638. https://doi.org/10.1038/s41598-022-09607-w