Abou Al-Sood, M. M., Abdel-Latif, A. A., & Ibrahim, A. M. (1999). Optimum compression ratio variation of a 4-stroke, direct injection diesel engine for minimum bsfc (No. 1999-01-2519).
SAE Technical Paper.
https://doi.org/10.4271/1999-01-2519
Akop, M. Z., Zama, Y., Furuhata, T., & Arai, M. (2013). Experimental investigations on adhered fuel and impinging diesel spray normal to a wall.
Atomization and Sprays, 23(3).
https://doi.org/10.1615/AtomizSpr.2013007447
Chen, R., Nishida, K., & Shi, B. (2020). Quantitative measurement of mixture formation in an impinging spray of ethanol-gasoline blend under cold-start condition via UV–Vis dual-wavelength laser absorption scattering (LAS) technique.
Fuel,
262, 116685.
https://doi.org/10.1016/j.fuel.2019.116685
Cho, K., Grover Jr, R. O., Assanis, D., Filipi, Z., Szekely, G., Najt, P., & Rask, R. (2010). Combining instantaneous temperature measurements and CFD for analysis of fuel impingement on the DISI engine piston top.
Journal of Engineering for Gas Turbines and Power,
132(7), 072805.
https://doi.org/10.1115/1.4000293
Drake, M. C., Fansler, T. D., Solomon, A. S., & Szekely Jr, G. A. (2003). Piston fuel films as a source of smoke and hydrocarbon emissions from a wall-controlled spark-ignited direct-injection engine.
SAE Transactions, 762-783.
https://www.jstor.org/stable/44741311
Egermann, J., Taschek, M., & Leipertz, A. (2002). Spray/wall interaction influences on the diesel engine mixture formation process investigated by spontaneous Raman scattering.
Proceedings of The Combustion Institute,
29(1), 617-623.
https://doi.org/10.1016/S1540-7489(02)80079-7
He, X., Li, Y., Liu, C., Sjöberg, M., Vuilleumier, D., Liu, F., & Yang, Q. (2020). Characteristics of spray and wall wetting under flash-boiling and non-flashing conditions at varying ambient pressures.
Fuel,
264, 116683.
https://doi.org/10.1016/j.fuel.2019.116683
He, X., Xu, K., Liu, Y. L., Zhang, Z., Zhang, H., & Zhao, J. (2023). Effects of ambient density and injection pressure on ignition and combustion characteristics in diesel spray under plateau cold-start conditions.
Fuel,
352, 129039.
https://doi.org/10.1016/j.fuel.2023.129039
Hwang, J., Park, Y., Bae, C., Lee, J., & Pyo, S. (2015). Fuel temperature influence on spray and combustion characteristics in a constant volume combustion chamber (CVCC) under simulated engine operating conditions.
Fuel,
160, 424-433.
https://doi.org/10.1016/j.fuel.2015.08.004
Li, X., Pan, H., Dong, X., Hung, D., & Xu, M. (2019). Spray impingement wall film breakup by wave entrainment.
Proceedings of the Combustion Institute,
37(3), 3287-3294.
https://doi.org/10.1016/j.proci.2018.07.101
Liu, H., Chen, B., Feng, L., Wang, Y., Yi, W., & Yao, M. (2018). Study on fuel distribution of wall-impinging diesel spray under different wall temperatures by laser-induced exciplex fluorescence (LIEF).
Energies,
11(5), 1249.
https://doi.org/10.3390/en11051249
Liu, Y., Pei, Y., Guo, R., Wang, C., & Xu, B. (2019a). Investigation of the liquid fuel film from GDI spray impingement on a heated surface with the laser induced fluorescence technique.
Fuel,
250, 211-217.
https://doi.org/10.1016/j.fuel.2019.03.120
Liu, H., Wang, J., Duan, H., Cai, C., Jia, M., & Zhang, Y. (2019b). Experimental study on the boiling criterion of the fuel film formed from spray/wall impingement.
Experiments in Fluids,
60, 1-14.
https://doi.org/10.1007/s00348-019-2829-8
Luo, H., Jin, Y., Nishida, K., Ogata, Y., Yao, J., & Chen, R. (2021). Microscopic characteristics of impinging spray sliced by a cone structure under increased injection pressures.
Fuel,
284, 119033.
https://doi.org/10.1016/j.fuel.2020.119033
Meingast, U., Staudt, M., Reichelt, L., Renz, U., & Sommerhoff, F. A. (2000). Analysis of spray/wall interaction under diesel engine conditions.
SAE Transactions, 299-312.
https://www.jstor.org/stable/44634220
Pan, H., Xiao, D., Hung, D., Xu, M., & Li, X. (2019). Experimental investigations of wall jet droplet impact on spray impingement fuel film formation.
Fuel,
241, 33-41.
https://doi.org/10.1016/j.fuel.2018.12.021
Pan, H., Xu, M., Hung, D., Lv, H., Dong, X., Kuo, T. W., & Parrish, S. E. (2017). Experimental investigation of fuel film characteristics of ethanol impinging spray at ultra-low temperature (No. 2017-01-0851).
SAE Technical Paper.
https://doi.org/10.4271/2017-01-0851
Oruganti, S. K., Torelli, R., Kim, K. S., Mayhew, E., & Kweon, C. B. (2024). A Phenomenological Thermal Spray Wall Interaction Modeling Framework Applied to a High-Temperature Ignition Assistant Device. Journal of Engineering for Gas Turbines and Power, 146(9).
Schünemann, E., Fedrow, S., & Leipertz, A. (1998). Droplet size and velocity measurements for the characterization of a DI-diesel spray impinging on a flat wall.
SAE Transactions, 1305-1313.
https://www.jstor.org/stable/44746541
Shi, Z., Cao, W., Wu, H., Li, H., Zhang, L., Bo, Y., & Li, X. (2022). Research on destructive knock combustion mechanism of heavy-duty diesel engine at low temperatures.
Combustion Science and Technology, 1-24.
https://doi.org/10.1080/00102202.2022.2156790
Shi, Z., Lee, C. F., Wu, H., Li, H., Wu, Y., Zhang, L., & Liu, F. (2020a). Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions.
Applied Energy,
262, 114552.
https://doi.org/10.1016/j.apenergy.2020.114552
Shi, Z., Lee, C. F., Wu, H., Li, H., Wu, Y., Zhang, L., & Liu, F. (2020b). Visualization research on low-temperature ignition and combustion characteristics of diesel/gasoline blends under cold-start conditions.
Journal of Engineering for Gas Turbines and Power,
142(6), 061011.
https://doi.org/10.1115/1.4047181
Wang, C., Pei, Y., Qin, J., Peng, Z., Li, X., & Liu, Y. (2022). A quantitative study on deposited fuel film and microscopic droplet characteristics of gasoline surrogate fuel and ethanol spray impingement.
Fuel Processing Technology,
238, 107505.
https://doi.org/10.1016/j.fuproc.2022.107505
Wang, C., Pei, Y., Qin, J., Peng, Z., Liu, Y., Xu, K., & Ye, Z. (2021). Laser induced fluorescence investigation on deposited fuel film from spray impingement on viscous film over a solid wall.
Energy,
231, 120893.
https://doi.org/10.1016/j.energy.2021.120893
Wu, H., Cao, W., Li, H., Shi, Z., Zhao, R., Zhang, L., & Li, X. (2023). Wall temperature effects on ignition characteristics of liquid-phase spray impingement for heavy-duty diesel engine at low temperatures.
Combustion Science and Technology,
195(3), 456-471.
https://doi.org/10.1080/00102202.2021.1961133
Xiao, D., Li, X., Hung, D. L., & Xu, M. (2019). Characteristics of impinging spray and corresponding fuel film under different injection and ambient pressure (No. 2019-01-0277).
SAE Technical Paper. https://doi.org/10.4271/2019-01-0277
Xiao, D., Qiu, S., Hung, D., Li, X., Nishida, K., & Xu, M. (2021). Evaporation and condensation of flash boiling sprays impinging on a cold surface.
Fuel,
287, 119423.
https://doi.org/10.1016/j.fuel.2020.119423
Zhang, G., Wu, H., Cao, Z., Li, X., & Myagkov, L. (2023). Coupling effect of thermal conducting and low-temperature reaction process on ignition characteristics under diesel-like conditions.
Fuel,
340, 127533.
https://doi.org/10.1016/j.fuel.2023.127533
Zhao, M., & Kaiser, S. A. (2018). Optical diagnostics for knock in compression-ignition engines via high-speed imaging.
SAE International Journal of Engines,
11(6), 903-918.
https://www.jstor.org/stable/26649137
Zhu, G. S., Reitz, R. D., Xin, J., & Takabayashi, T. (2001). Modelling characteristics of gasoline wall films in the intake port of port fuel injection engines.
International Journal of Engine Research,
2(4), 231-248.
https://doi.org/10.1243/146808701154545
Zhu, J., Nishida, K., & Uemura, T. (2014). Experimental study on flow fields of fuel droplets and ambient gas of diesel spray-free spray and flat-wall impinging spray.
Atomization and Sprays,
24(7).
https://doi.org/10.1615/AtomizSpr.2014009901