Experimental Investigation of Fuel Film Characteristics after Spray Impacting on Ultra-cold Surface

Document Type : Regular Article

Authors

School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China

10.47176/jafm.18.6.3112

Abstract

In extremely cold environments, the phenomenon of spray impacting on surfaces is unavoidable and the fuel film attached to the surface is one of the crucial factors influencing emission, stability, and cold-start performance in internal combustion engines. However, there is currently a lack of research on the effects of spray impacting on ultra-cold surfaces. In this study, researchers investigated the effect of surface temperature on impinging spray and fuel film area with different values of injection pressure, injection duration, and surface roughness visually using backlight and scattering methods. The penetration and diameter of the impinging spray were not affected by the low surface temperature due to the ample momentum, whereas the height was slightly decreased at the ultra-cold surface. The fuel film area significantly decreased with the lower surface temperature and the shorter injection duration. An empirical correlation for the fuel film area was established for reflecting the relationship between the fuel film area and the low surface temperature or injection conditions. The decrease in fuel film area was more noticeable on the surface with lower temperature and higher surface roughness (Ra=17.69μm). Nevertheless, the longer injection duration weakened this decreasing trend. With the increasing number of injections, the fuel film area rose while the area on the ultra-cold surface, increased more slowly because of the higher viscosity and thickness of the previous residual film. 

Keywords

Main Subjects


Abou Al-Sood, M. M., Abdel-Latif, A. A., & Ibrahim, A. M. (1999). Optimum compression ratio variation of a 4-stroke, direct injection diesel engine for minimum bsfc (No. 1999-01-2519). SAE Technical Paper. https://doi.org/10.4271/1999-01-2519
Akop, M. Z., Zama, Y., Furuhata, T., & Arai, M. (2013). Experimental investigations on adhered fuel and impinging diesel spray normal to a wall. Atomization and Sprays, 23(3). https://doi.org/10.1615/AtomizSpr.2013007447
Borman, G., & Nishiwaki, K. (1987). Internal-combustion engine heat transfer. Progress in Energy and Combustion Science, 13(1), 1-46. https://doi.org/10.1016/0360-1285(87)90005-0
Chen, R., Nishida, K., & Shi, B. (2020). Quantitative measurement of mixture formation in an impinging spray of ethanol-gasoline blend under cold-start condition via UV–Vis dual-wavelength laser absorption scattering (LAS) technique. Fuel, 262, 116685. https://doi.org/10.1016/j.fuel.2019.116685
Cho, K., Grover Jr, R. O., Assanis, D., Filipi, Z., Szekely, G., Najt, P., & Rask, R. (2010). Combining instantaneous temperature measurements and CFD for analysis of fuel impingement on the DISI engine piston top. Journal of Engineering for Gas Turbines and Power, 132(7), 072805. https://doi.org/10.1115/1.4000293
De Gennes, P. G. (1985). Wetting: statics and dynamics. Reviews of Modern Physics, 57(3), 827. https://doi.org/10.1103/RevModPhys.57.827
Drake, M. C., Fansler, T. D., Solomon, A. S., & Szekely Jr, G. A. (2003). Piston fuel films as a source of smoke and hydrocarbon emissions from a wall-controlled spark-ignited direct-injection engine. SAE Transactions, 762-783. https://www.jstor.org/stable/44741311
Egermann, J., Taschek, M., & Leipertz, A. (2002). Spray/wall interaction influences on the diesel engine mixture formation process investigated by spontaneous Raman scattering. Proceedings of The Combustion Institute, 29(1), 617-623. https://doi.org/10.1016/S1540-7489(02)80079-7
He, X., Li, Y., Liu, C., Sjöberg, M., Vuilleumier, D., Liu, F., & Yang, Q. (2020). Characteristics of spray and wall wetting under flash-boiling and non-flashing conditions at varying ambient pressures. Fuel, 264, 116683. https://doi.org/10.1016/j.fuel.2019.116683
He, X., Xu, K., Liu, Y. L., Zhang, Z., Zhang, H., & Zhao, J. (2023). Effects of ambient density and injection pressure on ignition and combustion characteristics in diesel spray under plateau cold-start conditions. Fuel, 352, 129039. https://doi.org/10.1016/j.fuel.2023.129039
Hwang, J., Park, Y., Bae, C., Lee, J., & Pyo, S. (2015). Fuel temperature influence on spray and combustion characteristics in a constant volume combustion chamber (CVCC) under simulated engine operating conditions. Fuel, 160, 424-433. https://doi.org/10.1016/j.fuel.2015.08.004
Ko, K., & Arai, M. (2002). Diesel spray impinging on a flat wall, part i: Characteristics of adhered fuel film in an impingement diesel spray. Atomization and Sprays, 12(5&6). https://doi.org/10.1615/AtomizSpr.v12.i56.120
Lamiel, Q., Lamarque, N., Hélie, J., & Legendre, D. (2021). On the spreading of high-pressure spray-generated liquid wall films. International Journal of Multiphase Flow, 139, 103619. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103619
Li, X., Pan, H., Dong, X., Hung, D., & Xu, M. (2019). Spray impingement wall film breakup by wave entrainment. Proceedings of the Combustion Institute, 37(3), 3287-3294. https://doi.org/10.1016/j.proci.2018.07.101
Liu, H., Chen, B., Feng, L., Wang, Y., Yi, W., & Yao, M. (2018). Study on fuel distribution of wall-impinging diesel spray under different wall temperatures by laser-induced exciplex fluorescence (LIEF). Energies, 11(5), 1249. https://doi.org/10.3390/en11051249
Liu, Y., Pei, Y., Guo, R., Wang, C., & Xu, B. (2019a). Investigation of the liquid fuel film from GDI spray impingement on a heated surface with the laser induced fluorescence technique. Fuel, 250, 211-217. https://doi.org/10.1016/j.fuel.2019.03.120
Liu, H., Wang, J., Duan, H., Cai, C., Jia, M., & Zhang, Y. (2019b). Experimental study on the boiling criterion of the fuel film formed from spray/wall impingement. Experiments in Fluids, 60, 1-14. https://doi.org/10.1007/s00348-019-2829-8
Luo, H., Jin, Y., Nishida, K., Ogata, Y., Yao, J., & Chen, R. (2021). Microscopic characteristics of impinging spray sliced by a cone structure under increased injection pressures. Fuel, 284, 119033. https://doi.org/10.1016/j.fuel.2020.119033
Meingast, U., Staudt, M., Reichelt, L., Renz, U., & Sommerhoff, F. A. (2000). Analysis of spray/wall interaction under diesel engine conditions. SAE Transactions, 299-312. https://www.jstor.org/stable/44634220
Pan, H., Xiao, D., Hung, D., Xu, M., & Li, X. (2019). Experimental investigations of wall jet droplet impact on spray impingement fuel film formation. Fuel, 241, 33-41. https://doi.org/10.1016/j.fuel.2018.12.021
Pan, H., Xu, M., Hung, D., Lv, H., Dong, X., Kuo, T. W., & Parrish, S. E. (2017). Experimental investigation of fuel film characteristics of ethanol impinging spray at ultra-low temperature (No. 2017-01-0851). SAE Technical Paper. https://doi.org/10.4271/2017-01-0851
Oruganti, S. K., Torelli, R., Kim, K. S., Mayhew, E., & Kweon, C. B. (2024). A Phenomenological Thermal Spray Wall Interaction Modeling Framework Applied to a High-Temperature Ignition Assistant Device. Journal of Engineering for Gas Turbines and Power, 146(9).
Schulz, F., & Beyrau, F. (2018). Systematic investigation of fuel film evaporation (No. 2018-01-0310). SAE Technical Paper. https://doi.org/10.4271/2018-01-0310
Schünemann, E., Fedrow, S., & Leipertz, A. (1998). Droplet size and velocity measurements for the characterization of a DI-diesel spray impinging on a flat wall. SAE Transactions, 1305-1313. https://www.jstor.org/stable/44746541
Shi, Z., Cao, W., Wu, H., Li, H., Zhang, L., Bo, Y., & Li, X. (2022). Research on destructive knock combustion mechanism of heavy-duty diesel engine at low temperatures. Combustion Science and Technology, 1-24. https://doi.org/10.1080/00102202.2022.2156790
Shi, Z., Lee, C. F., Wu, H., Li, H., Wu, Y., Zhang, L., & Liu, F. (2020a). Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions. Applied Energy, 262, 114552. https://doi.org/10.1016/j.apenergy.2020.114552
Shi, Z., Lee, C. F., Wu, H., Li, H., Wu, Y., Zhang, L., & Liu, F. (2020b). Visualization research on low-temperature ignition and combustion characteristics of diesel/gasoline blends under cold-start conditions. Journal of Engineering for Gas Turbines and Power, 142(6), 061011. https://doi.org/10.1115/1.4047181
Suh, H. K., Park, S., & Lee, C. S. (2007). A study of the flow and atomization characteristics of impinged diesel spray on a chamber wall. Atomization and Sprays, 17(7). https://doi.org/10.1615/AtomizSpr.v17.i7.10
Wang, C., Pei, Y., Qin, J., Peng, Z., Li, X., & Liu, Y. (2022). A quantitative study on deposited fuel film and microscopic droplet characteristics of gasoline surrogate fuel and ethanol spray impingement. Fuel Processing Technology, 238, 107505. https://doi.org/10.1016/j.fuproc.2022.107505
Wang, C., Pei, Y., Qin, J., Peng, Z., Liu, Y., Xu, K., & Ye, Z. (2021). Laser induced fluorescence investigation on deposited fuel film from spray impingement on viscous film over a solid wall. Energy, 231, 120893. https://doi.org/10.1016/j.energy.2021.120893
Wu, H., Cao, W., Li, H., Shi, Z., Zhao, R., Zhang, L., & Li, X. (2023). Wall temperature effects on ignition characteristics of liquid-phase spray impingement for heavy-duty diesel engine at low temperatures. Combustion Science and Technology, 195(3), 456-471. https://doi.org/10.1080/00102202.2021.1961133
Xiao, D., Li, X., Hung, D. L., & Xu, M. (2019). Characteristics of impinging spray and corresponding fuel film under different injection and ambient pressure (No. 2019-01-0277). SAE Technical Paper. https://doi.org/10.4271/2019-01-0277
Xiao, D., Qiu, S., Hung, D., Li, X., Nishida, K., & Xu, M. (2021). Evaporation and condensation of flash boiling sprays impinging on a cold surface. Fuel, 287, 119423. https://doi.org/10.1016/j.fuel.2020.119423
Zhang, G., Wu, H., Cao, Z., Li, X., & Myagkov, L. (2023). Coupling effect of thermal conducting and low-temperature reaction process on ignition characteristics under diesel-like conditions. Fuel, 340, 127533. https://doi.org/10.1016/j.fuel.2023.127533
Zhao, M., & Kaiser, S. A. (2018). Optical diagnostics for knock in compression-ignition engines via high-speed imaging. SAE International Journal of Engines, 11(6), 903-918. https://www.jstor.org/stable/26649137
Zhu, G. S., Reitz, R. D., Xin, J., & Takabayashi, T. (2001). Modelling characteristics of gasoline wall films in the intake port of port fuel injection engines. International Journal of Engine Research, 2(4), 231-248. https://doi.org/10.1243/146808701154545
Zhu, J., Nishida, K., & Uemura, T. (2014). Experimental study on flow fields of fuel droplets and ambient gas of diesel spray-free spray and flat-wall impinging spray. Atomization and Sprays, 24(7). https://doi.org/10.1615/AtomizSpr.2014009901