Research on the Effect of Small Blade Arrangement on the Cavitation Performance of Centrifugal Pumps

Document Type : Regular Article

Authors

College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, 730050, China

10.47176/jafm.18.6.3153

Abstract

This study proposes a novel approach to enhance the cavitation performance of centrifugal pumps with low specific speed by incorporating small blades within the impeller flow channel. These blades are deflected at specific angles at their trailing edges to suppress cavitation and improve pump efficiency. Experimental tests were conducted to assess the external characteristics and cavitation performance of a prototype pump, and the results were compared with numerical simulations. The findings indicate that the addition of small blades has minimal impact on the pump's external characteristics but significantly enhances its cavitation performance. Specifically, the low-pressure regions and areas of high-intensity turbulent kinetic energy within the impeller were reduced. Consequently, the volume of cavitation bubbles and the amplitude of pressure pulsation decreased. Flow field analysis revealed that the modified flow structure is more stable, with reduced vortex intensity. The small blades effectively align disordered turbulent flow lines, thereby suppressing cavitation development.

Keywords

Main Subjects


Coutier-Delgosha, O., Fortes-Patella, R., & Reboud, J. L. (2003). Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. Journal of Fluids Engineering, 125(1), 38-45. https://doi.org/10.1115/1.1524584
Dong, W., He, F., Ai, G., Liang, W., Li, P., & Fan, X. (2024). Effect of the number of guide vanes on cavitation characteristics and pressure pulsation of centrifugal pumps. IOP Publishing Ltd.  https://doi.org/10.1088/1742-6596/2707/1/012012
Dönmez, A. H., Yumurtacı, Z., & Kavurmacıoğlu, L. (2018). The effect of inlet blade angle variation on cavitation performance of a centrifugal pump: a parametric study. Journal of Fluids Engineering, 141(2). https://doi.org/10.1115/1.4040557
Ferziger, J. H., Peric, M., & Leonard, A. (1997). Computational methods for fluid dynamics. Physics Today, 50(3), 80-84. http://dx.doi.org/10.1007/978-3-319-99693-6
Gu, Y., Yin, Z., Yu, S. W., He, C., Wang, W., Zhang, J., Wu, D., Mou, J., & Ren, Y. (2023). Suppression of unsteady partial cavitation by a bionic jet. International Journal of Multiphase Flow. https://doi.org/10.1016/j.ijmultiphaseflow. 104466
Jun, Li, X., Yuan, S., Pan, Z., & Li, Y. (2012). Realization and application evaluation of near-wall mesh in centrifugal pumps. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 28(20), 67-72. https://doi.org/10.3969/j.issn.1002-6819.2012.20.009
Kurokawa, J., Saha, S. L., Matsui, J., & Kitahora, T. (1999). Passive control of rotating stall in a parallel-wall vaneless diffuser by radial grooves. Journal of Fluids Engineering, 122(1), 90-96. https://doi.org/10.1115/1.483230
Li, J., Yan, H., & Wang, F. (2024). Suppression of hydrofoil unsteady cavitation by periodic jets based on fish gill respiration. Ocean Engineering (Feb.1), 293. https://doi.org/10.1016/j.oceaneng.2023.116584
Ma, L. L., Wang, C., Chen, Y., Wang, B. H., Yu, D. H., & Yang, Y. C. (2024). The study of using the inducer to improve the cavitation performance of a centrifugal pump. Journal of Physics: Conference Series, 2752(1). https://doi.org/10.1088/1742-6596/2752/1/012122
Pang, S., Zhu, B., Shen, Y., & Chen, Z. (2024). Study on suppression of cavitating vortex rope on pump-turbines by J-groove. Applied Energy, 360. https://doi.org/10.1016/j.apenergy.2024.122843
Qiu, C., & Fang, X. (2017). Characteristics research of a low-specific-speed centrifugal pump with splitter blades. Fluid Machinery. https://doi.org/10.3969/j.issn.1005-0329.2017.06.001
Wang, J. Q., Wan, C. R., Zhou, M., Wang, Z. L., & Yang, M. Z. (2024a). Investigations on cavitation suppression of bionic water-jet impeller. Journal of Physics: Conference Series, 2707(1). https://doi.org/10.1088/1742-6596/2707/1/012147
Wang, L. K., Liang, C., Luo, X. Q., Xie, H., Zhu, G. J., Feng, J. J., & Li, C. H. (2024b). Numerical investigation of cavitation suppression of centrifugal pump based on the bionic humpback whale blade. Journal of Physics: Conference Series, 2752(1). https://doi.org/10.1088/1742-6596/2752/1/012126
Wang, L., Luo, X., Feng, J., Lu, J., Zhu, G., & Wang, W. (2023). Method of bionic wavy tip on vortex and cavitation suppression of a hydrofoil in tidal energy. Ocean Engineering (Jun.15), 278. https://doi.org/10.1016/j.oceaneng.2023.114499
Wang, Y. Y., Zhao, W. G., Han, H. D., Fan, P. J., Liu, Z. L., & Hu, J. Q. (2022). Effects of the centrifugal pump outlet blade angle on its internal flow field characteristics under cavitation condition. Journal of Applied Fluid Mechanics, 16(2), 389-399. https://doi.org/10.47176/jafm.16.02.1241
Weiguo, Z., & Bao, G. (2021). Investigations on the effects of obstacles on the surfaces of blades of the centrifugal pump to suppress cavitation development. Modern Physics Letters B, 35(20). https://doi.org/10.1142/S0217984921503279
Weiguo, Z., & Zhongliang, Z. (2022). Influence of geometric parameters of tiny blades on the shroud of a centrifugal pump on the cavitation suppression effect. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.865885
Wilcox, D. C. & Alem, D. (1994). Simulation of transition with a two-equation turbulence model. Aiaa Journal, 32(2), 247-255. https://doi.org/10.2514/3.59994
Wilcox, D. C. (2008). Formulation of the k - ω Turbulence Model Revisited. Aiaa Journal,46(11), 2823-2838. https://doi.org/10.2514/1.36541
Yan, S., Jiang, Y., & Hu, M. (2022). Study on the cavitation suppression mechanism of axial piston pump. International Journal of Aerospace Engineering. https://doi.org/10.1155/2022/9913739
Yuan, S., He, Y., Yuan, J., Cong, X., & Zhao, B. (2006). (2004). Numerical simulation of three-dimensional incompressible turbulent flow field in centrifugal pump impeller with diverting vane. Journal of Mechanical Engineering (11), 153-157. https://link.cnki.net/doi/10.3321/j.issn:0577-6686.2004.11.029
Yun, W., Liang, D., Jianwei, W., Zhijian, L., & Wei, W. (2023). Simulation study on active cavitation suppression for a typical hydrofoil. Journal of Physics: Conference Series, 2441(1). https://doi.org/10.1088/1742-6596/2441/1/012043
Zakir, K., & Zhao, W. (2024). Cavitation mitigation via curvilinear barriers in centrifugal pump. Discover Mechanical Engineering, 3(1). https://doi.org/10.1007/s44245-024-00045-8
Zhu, Y., Zhou, L., Lv, S., Shi, W., Ni, H., Li, X., Tao, C., & Hou, Z. (2024). Research progress on identification and suppression methods for monitoring the cavitation state of centrifugal pumps. Water, 16(1), 52. https://doi.org/10.3390/w16010052
Zwart, P. J., Gerber, A. G., & Belamri, T. (2004). A two-phase flow model for predicting cavitation dynamics. Proceedings of the Fifth International Conference on Multiphase Flow, Yokohama, Japan, 152, 11.