A Design and Optimization of Multi-slot Diffusers for Power Augmentation in Small Axial Flow Wind Turbines

Document Type : Regular Article

Authors

1 Department of Mechanical Engineering, University of Birjand, Birjand, Iran

2 Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran

10.47176/jafm.18.6.3077

Abstract

This study delves into a cutting-edge approach to boosting the efficiency of small urban wind turbines through the innovative use of power augmentation diffusers. Due to their compact size and the naturally low wind energy availability in urban areas, conventional small wind turbines often fall short in economic viability. Power augmentation, particularly using multi-slotted diffuser shrouds for boundary layer control (BLC), presents a promising solution. In this research various diffuser geometries are designed and tested using Ansys Fluent software and the SST k-ω turbulence model. The resulting data is integrated into an artificial neural network (ANN) and further optimized using both single-objective and multi-objective genetic algorithms (GA). Remarkably, the optimized designs demonstrate a significant increase in kinetic energy, with one geometry achieving nearly 5 times the free-stream kinetic energy at the throat and another delivering over 5.3 times more at the throat and 52% higher kinetic energy at the diffuser outlet. These breakthroughs offer valuable insights for the future of small wind turbine design, providing a pathway to more efficient, economically feasible solutions. 

Keywords

Main Subjects


Abe, K., Kihara, H., Sakurai, A., Wada, E., Sato, K., Nishida, M., & Ohya, Y. (2006). An experimental study of tip-vortex structures behind a small wind turbine with a flanged diffuser. Wind & structures, 9(5), 413-417. https://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do?cn=JAKO200621349899175
Abe, K., Nishida, M., Sakurai, A., Ohya, Y., Kihara, H., Wada, E., & Sato, K. (2005). Experimental and numerical investigations of flow fields behind a small wind turbine with a flanged diffuser. Journal of Wind Engineering and Industrial Aerodynamics, 93(12), 951-970. https://doi.org/https://doi.org/10.1016/j.jweia.2005.09.003
Ackermann, T., & Söder, L. (2002). An overview of wind energy-status 2002. Renewable and Sustainable Energy Reviews, 6(1), 67-127. https://doi.org/https://doi.org/10.1016/S1364-0321(02)00008-4
Agha, A., Chaudhry, H. N., & Wang, F. (2018). Diffuser Augmented Wind Turbine (DAWT) technologies: A review. International Journal of Renewable Energy Research, 8(3), 1369-1385. https://doi.org/10.20508/ijrer.v8i3.7794.g7436
Agha, A., Chaudhry, H. N., & Wang, F. (2020). Determining the augmentation ratio and response behaviour of a Diffuser Augmented Wind Turbine (DAWT). Sustainable Energy Technologies and Assessments, 37, 100610. https://doi.org/https://doi.org/10.1016/j.seta.2019.100610
Ahmed, A. S. (2010). Wind energy as a potential generation source at Ras Benas, Egypt. Renewable and Sustainable Energy Reviews, 14(8), 2167-2173. https://doi.org/https://doi.org/10.1016/j.rser.2010.03.006
Alquraishi, B. A., Asmuin, N. Z., Mohd, S., Abd Al-Wahid, W. A., & Mohammed, A. N. (2019). Review on diffuser augmented wind turbine (dawt). International Journal of Integrated Engineering, 11(1). http://penerbit.uthm.edu.my/ojs/index.php/ijie
Behzadian, K., Kapelan, Z., Savic, D., & Ardeshir, A. (2009). Stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks. Environmental Modelling & Software, 24(4), 530-541. https://doi.org/https://doi.org/10.1016/j.envsoft.2008.09.013
Ben David Wood, O. G. (2014). Diffuser Augmented Wind Turbines . US Patent number: 9,512,817 B2 https://www.patents-review.com/a/20140227092-diffuser-augmented-wind-turbines.html
Bode, F., Meslem, A., Patrascu, C., & Nastase, I. (2020). Flow and wall shear rate analysis for a cruciform jet impacting on a plate at short distance. Progress in Computational Fluid Dynamics, an International Journal, 20(3), 169-185. https://doi.org/10.1504/PCFD.2020.107276
Bontempo, R., Carandente, R., & Manna, M. (2021). A design of experiment approach as applied to the analysis of diffuser-augmented wind turbines. Energy Conversion and Management, 235, 113924. https://doi.org/https://doi.org/10.1016/j.enconman.2021.113924
Dighe, V. V., Avallone, F., Igra, O., & van Bussel, G. (2019). Multi-element ducts for ducted wind turbines: a numerical study. Wind Energy Science, 4(3), 439-449. https://doi.org/10.5194/wes-4-439-2019
Dighe, V. V., de Oliveira, G., Avallone, F., & van Bussel, G. J. W. (2018). On the effects of the shape of the duct for ducted wind turbines. 2018 Wind Energy Symposium. American Institute of Aeronautics and Astronautics. https://doi.org/doi:10.2514/6.2018-0997
Ding, C., Zhang, B., Liang, C., Visser, K., & Yao, G. (2022). High-Order Large eddy simulations of a wind turbine in ducted and open-rotor configurations. Journal of Fluids Engineering, 145(2). https://doi.org/10.1115/1.4055989
Dong, Y., Li, Z., & Li, J. (2023). Investigations on the splitter structure to improve the aerodynamic performance of gas turbine exhaust diffuser at different swirl angles. Journal of Engineering for Gas Turbines and Power, 145(6). https://doi.org/10.1115/1.4056428
Eriksson, K., Ramasamy, S., Zhang, X., Wang, Z., & Danielsson, F. (2022). Conceptual framework of scheduling applying discrete event simulation as an environment for deep reinforcement learning. Procedia CIRP, 107, 955-960. https://doi.org/https://doi.org/10.1016/j.procir.2022.05.091
García Auyanet, A., & Verdin, P. G. (2022). Numerical study of the effect of flap geometry in a multi-slot ducted wind turbine. Sustainability, 14(19), 12032. https://doi.org/10.3390/su141912032
Ghajar, R. F., & Badr, E. A. (2008). An experimental study of a collector and diffuser system on a small demonstration wind turbine. International Journal of Mechanical Engineering Education, 36(1), 58-68. https://doi.org/10.7227/IJMEE.36.1.6
Gilbert, B. L., & Foreman, K. M. (1979). Experimental demonstration of the diffuser-augmented wind turbine concept. Journal of Energy, 3(4), 235-240. https://doi.org/10.2514/3.48002
Gilbert, B. L., & Foreman, K. M. (1983). Experiments with a diffuser-augmented model wind turbine. Journal of Energy Resources Technology, 105(1), 46-53. https://doi.org/10.1115/1.3230875
Goldberg, U. C., & Batten, P. (2015). A wall-distance-free version of the SST turbulence model. Engineering Applications of Computational Fluid Mechanics, 9(1), 33-40. https://doi.org/10.1080/19942060.2015.1004791
Heyru, B., & Bogale, W. (2022). Flow field analysis and testing of curved shroud wind turbine with different flange angle. Cogent Engineering, 9(1), 2095951.
Hjort, S., & Larsen, H. (2014). A Multi-Element Diffuser Augmented Wind Turbine. Energies, 7(5), 3256-3281. https://www.mdpi.com/1996-1073/7/5/3256
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359-366. https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
Igra, O. (1981). Research and development for shrouded wind turbines. Energy Conversion and Management, 21(1), 13-48. https://doi.org/https://doi.org/10.1016/0196-8904(81)90005-4
Jafari, S. A. H., & Kosasih, B. (2014). Flow analysis of shrouded small wind turbine with a simple frustum diffuser with computational fluid dynamics simulations. Journal of Wind Engineering and Industrial Aerodynamics, 125, 102-110. https://doi.org/https://doi.org/10.1016/j.jweia.2013.12.001
Kishore, R. A., Coudron, T., & Priya, S. (2013). Small-scale wind energy portable turbine (SWEPT). Journal of Wind Engineering and Industrial Aerodynamics, 116, 21-31. https://doi.org/https://doi.org/10.1016/j.jweia.2013.01.010
Koc, E., & Yavuz, T. (2019). Effect of flap on the wind turbine-concentrator combination. International Journal of Renewable Energy Research (IJRER), 9(2), 551-560. https://doi.org/10.20508/ijrer.v9i2.8838.g7625
Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992-1007. https://doi.org/https://doi.org/10.1016/j.ress.2005.11.018
Kwong, A. H., & Dowling, A. P. (1994). Active boundary-layer control in diffusers. AIAA journal, 32(12), 2409-2414. https://doi.org/10.2514/3.12307
Lawn, C. J. (2003). Optimization of the power output from ducted turbines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 217(1), 107-117. https://doi.org/10.1243/095765003321148754
Li, S., Wunsch, D. C., O’Hair , E., & Giesselmann, M. G. (2001). Comparative Analysis of regression and artificial neural network models for wind turbine power curve estimation. Journal of Solar Energy Engineering, 123(4), 327-332. https://doi.org/10.1115/1.1413216
Lilley, G., & Rainbird, W. (1956). A preliminary report on the design and performance of ducted windmills.
Loeffler Jr, A. L. (1981). Flow Field Analysis and Performance of Wind Turbines Employing Slotted Diffusers. Journal of Solar Energy Engineering, 103(1), 17-22. https://doi.org/10.1115/1.3266198
Magdi, R., & Adam, M. R. (2011). Wind turbines theory - the betz equation and optimal rotor tip speed ratio. In C. Rupp (Ed.), Fundamental and advanced topics in wind power (pp. Ch. 2). IntechOpen. https://doi.org/10.5772/21398
Mei, Z., Gao, B., Zhang, N., Lai, Y., & Li, G. (2022). Numerical Study on the unsteady flow field characteristics of a podded propulsor based on DDES method. Energies, 15(23), 9117. https://www.mdpi.com/1996-1073/15/23/9117
Menter, F. R. Kuntz, M., & Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model. In K. Hanjalic, Y. Nagano, & M. Tummers (Eds.), Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer (pp. 625-632). Begell House
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. https://doi.org/10.2514/3.12149
Mohammed, A., Mohd Khairul Hafiz, M., Faizal, M., Kamarul Arifin, A., & Noorfaizal, Y. (2022). Design of wind nozzle for nozzle augmented wind turbine. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 95(1), 36-43. https://doi.org/10.37934/arfmts.95.1.3643
Ohya, Y., & Karasudani, T. (2010). A Shrouded wind turbine generating high output power with wind-lens technology. Energies, 3(4), 634-649. https://www.mdpi.com/1996-1073/3/4/634
Ohya, Y., Karasudani, T., Sakurai, A., Abe, K. I., & Inoue, M. (2008). Development of a shrouded wind turbine with a flanged diffuser. Journal of Wind Engineering and Industrial Aerodynamics, 96(5), 524-539. https://doi.org/https://doi.org/10.1016/j.jweia.2008.01.006
Oman, R. A., Foreman, K. M., & Gilbert, B. L. (1976a). Investigation of diffuser-augmented wind turbines. https://ui.adsabs.harvard.edu/abs/1976gac..rept.....O
Oman, R., Foreman, K., & Gilbert, B. (1976b). Investigation of diffuser-augmented wind turbines. Progress Report.
Pajasmaa, J. Miettinen, K. & Silvennoinen, J. Group Decision Making in Multiobjective Optimization: A Systematic Literature Review. Group Decis Negot (2024). https://doi.org/10.1007/s10726-024-09915-8
Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15(3), 1513-1524. https://doi.org/https://doi.org/10.1016/j.rser.2010.11.037
Perlin, M., Dowling, D. R., & Ceccio, S. L. (2016). Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers. Journal of Fluids Engineering, 138(9). https://doi.org/10.1115/1.4033295
Phillips, D. G. (2003). An investigation on diffuser augmented wind turbine design University of Auckland. https://books.google.com/books?id=v266NwAACAAJ
Phillips, D. G., Flay, R. G. J., & Nash, T. A. (1999). Aerodynamic Analysis and monitoring of the vortec 7 diffuser-augmented wind turbine. Transactions of the Institution of Professional Engineers New Zealand: Electrical/Mechanical/Chemical Engineering Section, 26(1), 13-19. https://search.informit.org/doi/10.3316/informit.290017493057769
Promthaisong, P., & Eiamsa-ard, S. (2019). Fully developed periodic and thermal performance evaluation of a solar air heater channel with wavy-triangular ribs placed on an absorber plate. International Journal of Thermal Sciences, 140, 413-428. https://doi.org/https://doi.org/10.1016/j.ijthermalsci.2019.03.010
Rahman, M. M., Vuorinen, V., Taghinia, J., & Larmi, M. (2019). Wall-distance-free formulation for SST k-ω model. European Journal of Mechanics - B/Fluids, 75, 71-82. https://doi.org/https://doi.org/10.1016/j.euromechflu.2018.11.010
Ramayee, L., & Supradeepan, K. (2022). Influence of axial distance and duct angle in the improvement of power generation in duct augmented wind turbines. Journal of Energy Resources Technology, 144(9). https://doi.org/10.1115/1.4053615
Ramesh Kumar, K., & Selvaraj, M. (2023). Novel deep learning model for predicting wind velocity and power estimation in advanced INVELOX wind turbines. Journal of Applied Fluid Mechanics, 16(6), 1256-1268. https://doi.org/10.47176/jafm.16.06.1637
Ranjbar, M. H., Mashouf, H., Gharali, K., Rafiei, B., Al-Haq, A., & Nathwani, J. (2022). Power augmentation of ducted wind turbines for urban structures: Experimental, numerical, and economic approaches. Energy Science & Engineering, 10(10), 3893-3907. https://doi.org/https://doi.org/10.1002/ese3.1252
Ruprecht, A., & Reinhardt, H. (2003). Development of a Maritime Current Turbine. Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. Volume 1: Fora, Parts A, B, C, and D. Honolulu, Hawaii, USA. July 6–10, 2003. pp. 1871-1876. ASME.  https://doi.org/10.1115/FEDSM2003-45683
Schmitt, L. M. (2001). Theory of genetic algorithms. Theoretical Computer Science, 259(1), 1-61. https://doi.org/https://doi.org/10.1016/S0304-3975(00)00406-0
Seeni, A. (2019). Numerical validation of NACA 0009 airfoil in ultra-low reynolds number flows. International Review of Aerospace Engineering, 12, 83-92.
Shahsavarifard, M., Bibeau, E. L., & Chatoorgoon, V. (2015). Effect of shroud on the performance of horizontal axis hydrokinetic turbines. Ocean Engineering, 96, 215-225. https://doi.org/10.1016/j.oceaneng.2014.12.006
Siavash, N. K., Ghobadian, B., Najafi, G., Rohani, A., Tavakoli, T., Mahmoodi, E., Mamat, R., & mazlan, M. (2021). Prediction of power generation and rotor angular speed of a small wind turbine equipped to a controllable duct using artificial neural network and multiple linear regression. Environmental Research, 196, 110434. https://doi.org/https://doi.org/10.1016/j.envres.2020.110434
Tacutu, L., Nastase, I., Bode, F., Croitoru, C., & Lungu, C. (2019). Numerical models development for unidirectional air flow diffusers with lobed and circular orifices. E3S Web of Conferences, 111, 01049. https://doi.org/10.1051/e3sconf/201911101049
Thangavelu, S. K., Mutasher, S., & Lau, Y. (2013). Design and flow velocity simulation of diffuser augmented wind turbine using CFD. Journal of Engineering Science and Technology, 8, 372-384.
Tripathi, S. K. (2017). Performance Analysis of diffuser augmented horizontal axis wind turbine. International Journal of Approximate Reasoning, 5, 1251-1259. https://doi.org/10.21474/IJAR01/4240
Van Bussel, G. J. (2007). The science of making more torque from wind: Diffuser experiments and theory revisited. Journal of Physics: Conference Series.
Vaz, J. R. P., & Wood, D. H. (2018). Effect of the diffuser efficiency on wind turbine performance. Renewable Energy, 126, 969-977. https://doi.org/https://doi.org/10.1016/j.renene.2018.04.013
Wilson, R. E. (1980). Wind-turbine aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics, 5(3), 357-372. https://doi.org/https://doi.org/10.1016/0167-6105(80)90042-2
Yadegari, M. (2021). An optimal design for S-shaped air intake diffusers using simultaneous entropy generation analysis and multi-objective genetic algorithm. The European Physical Journal Plus, 136(10), 1019. https://doi.org/10.1140/epjp/s13360-021-01999-4
Yadegari, M., & Bak Khoshnevis, A. (2020a). Entropy generation analysis of turbulent boundary layer flow in different curved diffusers in air-conditioning systems. European Physical Journal Plus, 135(6). https://doi.org/10.1140/epjp/s13360-020-00545-y
Yadegari, M., & Bak Khoshnevis, A. (2020b). Numerical study of the effects of adverse pressure gradient parameter, turning angle and curvature ratio on turbulent flow in 3D turning curved rectangular diffusers using entropy generation analysis. The European Physical Journal Plus, 135(7), 548. https://doi.org/10.1140/epjp/s13360-020-00561-y
Yadegari, M., & Bak Khoshnevis, A. (2020c). A numerical study over the effect of curvature and adverse pressure gradient on development of flow inside gas transmission pipelines. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(8), 413. https://doi.org/10.1007/s40430-020-02495-z
Yadegari, M., & Bak Khoshnevis, A. (2021). Investigation of entropy generation, efficiency, static and ideal pressure recovery coefficient in curved annular diffusers. The European Physical Journal Plus, 136(1), 69. https://doi.org/10.1140/epjp/s13360-021-01071-1
Zhang, Q., & Wang, X. (2023). Numerical Investigation of Aerodynamic Performances for NREL 5-MW Offshore Wind Turbine. Wind, 3(2), 191-212.
Zore, K., Sasanapuri, B., Parkhi, G., & Varghese, A. (2019). Ansys mosaic poly-hexcore mesh for high-lift aircraft configuration. 21th Annual CFD Symposium. https://www.researchgate.net/publication/335789150.