Abe, K., Kihara, H., Sakurai, A., Wada, E., Sato, K., Nishida, M., & Ohya, Y. (2006). An experimental study of tip-vortex structures behind a small wind turbine with a flanged diffuser.
Wind & structures,
9(5), 413-417.
https://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do?cn=JAKO200621349899175
Abe, K., Nishida, M., Sakurai, A., Ohya, Y., Kihara, H., Wada, E., & Sato, K. (2005). Experimental and numerical investigations of flow fields behind a small wind turbine with a flanged diffuser.
Journal of Wind Engineering and Industrial Aerodynamics,
93(12), 951-970.
https://doi.org/https://doi.org/10.1016/j.jweia.2005.09.003
Alquraishi, B. A., Asmuin, N. Z., Mohd, S., Abd Al-Wahid, W. A., & Mohammed, A. N. (2019). Review on diffuser augmented wind turbine (dawt).
International Journal of Integrated Engineering,
11(1).
http://penerbit.uthm.edu.my/ojs/index.php/ijie
Bode, F., Meslem, A., Patrascu, C., & Nastase, I. (2020). Flow and wall shear rate analysis for a cruciform jet impacting on a plate at short distance.
Progress in Computational Fluid Dynamics, an International Journal,
20(3), 169-185.
https://doi.org/10.1504/PCFD.2020.107276
Dighe, V. V., Avallone, F., Igra, O., & van Bussel, G. (2019). Multi-element ducts for ducted wind turbines: a numerical study.
Wind Energy Science,
4(3), 439-449.
https://doi.org/10.5194/wes-4-439-2019
Dighe, V. V., de Oliveira, G., Avallone, F., & van Bussel, G. J. W. (2018).
On the effects of the shape of the duct for ducted wind turbines. 2018 Wind Energy Symposium. American Institute of Aeronautics and Astronautics.
https://doi.org/doi:10.2514/6.2018-0997
Ding, C., Zhang, B., Liang, C., Visser, K., & Yao, G. (2022). High-Order Large eddy simulations of a wind turbine in ducted and open-rotor configurations.
Journal of Fluids Engineering,
145(2).
https://doi.org/10.1115/1.4055989
Dong, Y., Li, Z., & Li, J. (2023). Investigations on the splitter structure to improve the aerodynamic performance of gas turbine exhaust diffuser at different swirl angles.
Journal of Engineering for Gas Turbines and Power,
145(6).
https://doi.org/10.1115/1.4056428
Eriksson, K., Ramasamy, S., Zhang, X., Wang, Z., & Danielsson, F. (2022). Conceptual framework of scheduling applying discrete event simulation as an environment for deep reinforcement learning.
Procedia CIRP,
107, 955-960.
https://doi.org/https://doi.org/10.1016/j.procir.2022.05.091
García Auyanet, A., & Verdin, P. G. (2022). Numerical study of the effect of flap geometry in a multi-slot ducted wind turbine.
Sustainability,
14(19), 12032.
https://doi.org/10.3390/su141912032
Ghajar, R. F., & Badr, E. A. (2008). An experimental study of a collector and diffuser system on a small demonstration wind turbine.
International Journal of Mechanical Engineering Education,
36(1), 58-68.
https://doi.org/10.7227/IJMEE.36.1.6
Gilbert, B. L., & Foreman, K. M. (1979). Experimental demonstration of the diffuser-augmented wind turbine concept.
Journal of Energy,
3(4), 235-240.
https://doi.org/10.2514/3.48002
Gilbert, B. L., & Foreman, K. M. (1983). Experiments with a diffuser-augmented model wind turbine.
Journal of Energy Resources Technology,
105(1), 46-53.
https://doi.org/10.1115/1.3230875
Heyru, B., & Bogale, W. (2022). Flow field analysis and testing of curved shroud wind turbine with different flange angle. Cogent Engineering, 9(1), 2095951.
Lawn, C. J. (2003). Optimization of the power output from ducted turbines.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
217(1), 107-117.
https://doi.org/10.1243/095765003321148754
Li, S., Wunsch, D. C., O’Hair , E., & Giesselmann, M. G. (2001). Comparative Analysis of regression and artificial neural network models for wind turbine power curve estimation.
Journal of Solar Energy Engineering,
123(4), 327-332.
https://doi.org/10.1115/1.1413216
Lilley, G., & Rainbird, W. (1956). A preliminary report on the design and performance of ducted windmills.
Loeffler Jr, A. L. (1981). Flow Field Analysis and Performance of Wind Turbines Employing Slotted Diffusers.
Journal of Solar Energy Engineering,
103(1), 17-22.
https://doi.org/10.1115/1.3266198
Magdi, R., & Adam, M. R. (2011). Wind turbines theory - the betz equation and optimal rotor tip speed ratio. In C. Rupp (Ed.),
Fundamental and advanced topics in wind power (pp. Ch. 2). IntechOpen.
https://doi.org/10.5772/21398
Mei, Z., Gao, B., Zhang, N., Lai, Y., & Li, G. (2022). Numerical Study on the unsteady flow field characteristics of a podded propulsor based on DDES method.
Energies,
15(23), 9117.
https://www.mdpi.com/1996-1073/15/23/9117
Menter, F. R. Kuntz, M., & Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model. In K. Hanjalic, Y. Nagano, & M. Tummers (Eds.), Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer (pp. 625-632). Begell House
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA Journal,
32(8), 1598-1605.
https://doi.org/10.2514/3.12149
Mohammed, A., Mohd Khairul Hafiz, M., Faizal, M., Kamarul Arifin, A., & Noorfaizal, Y. (2022). Design of wind nozzle for nozzle augmented wind turbine.
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences,
95(1), 36-43.
https://doi.org/10.37934/arfmts.95.1.3643
Ohya, Y., Karasudani, T., Sakurai, A., Abe, K. I., & Inoue, M. (2008). Development of a shrouded wind turbine with a flanged diffuser.
Journal of Wind Engineering and Industrial Aerodynamics,
96(5), 524-539.
https://doi.org/https://doi.org/10.1016/j.jweia.2008.01.006
Oman, R., Foreman, K., & Gilbert, B. (1976b). Investigation of diffuser-augmented wind turbines. Progress Report.
Perlin, M., Dowling, D. R., & Ceccio, S. L. (2016). Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers.
Journal of Fluids Engineering,
138(9).
https://doi.org/10.1115/1.4033295
Phillips, D. G., Flay, R. G. J., & Nash, T. A. (1999). Aerodynamic Analysis and monitoring of the vortec 7 diffuser-augmented wind turbine.
Transactions of the Institution of Professional Engineers New Zealand: Electrical/Mechanical/Chemical Engineering Section,
26(1), 13-19.
https://search.informit.org/doi/10.3316/informit.290017493057769
Ramayee, L., & Supradeepan, K. (2022). Influence of axial distance and duct angle in the improvement of power generation in duct augmented wind turbines.
Journal of Energy Resources Technology,
144(9).
https://doi.org/10.1115/1.4053615
Ramesh Kumar, K., & Selvaraj, M. (2023). Novel deep learning model for predicting wind velocity and power estimation in advanced INVELOX wind turbines.
Journal of Applied Fluid Mechanics,
16(6), 1256-1268.
https://doi.org/10.47176/jafm.16.06.1637
Ranjbar, M. H., Mashouf, H., Gharali, K., Rafiei, B., Al-Haq, A., & Nathwani, J. (2022). Power augmentation of ducted wind turbines for urban structures: Experimental, numerical, and economic approaches.
Energy Science & Engineering,
10(10), 3893-3907.
https://doi.org/https://doi.org/10.1002/ese3.1252
Ruprecht, A., & Reinhardt, H. (2003). Development of a Maritime Current Turbine.
Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. Volume 1: Fora, Parts A, B, C, and D. Honolulu, Hawaii, USA. July 6–10, 2003. pp. 1871-1876. ASME.
https://doi.org/10.1115/FEDSM2003-45683
Seeni, A. (2019). Numerical validation of NACA 0009 airfoil in ultra-low reynolds number flows. International Review of Aerospace Engineering, 12, 83-92.
Siavash, N. K., Ghobadian, B., Najafi, G., Rohani, A., Tavakoli, T., Mahmoodi, E., Mamat, R., & mazlan, M. (2021). Prediction of power generation and rotor angular speed of a small wind turbine equipped to a controllable duct using artificial neural network and multiple linear regression.
Environmental Research,
196, 110434.
https://doi.org/https://doi.org/10.1016/j.envres.2020.110434
Tacutu, L., Nastase, I., Bode, F., Croitoru, C., & Lungu, C. (2019).
Numerical models development for unidirectional air flow diffusers with lobed and circular orifices. E3S Web of Conferences, 111, 01049.
https://doi.org/10.1051/e3sconf/201911101049
Thangavelu, S. K., Mutasher, S., & Lau, Y. (2013). Design and flow velocity simulation of diffuser augmented wind turbine using CFD. Journal of Engineering Science and Technology, 8, 372-384.
Tripathi, S. K. (2017). Performance Analysis of diffuser augmented horizontal axis wind turbine.
International Journal of Approximate Reasoning,
5, 1251-1259.
https://doi.org/10.21474/IJAR01/4240
Van Bussel, G. J. (2007). The science of making more torque from wind: Diffuser experiments and theory revisited. Journal of Physics: Conference Series.
Yadegari, M. (2021). An optimal design for S-shaped air intake diffusers using simultaneous entropy generation analysis and multi-objective genetic algorithm.
The European Physical Journal Plus,
136(10), 1019.
https://doi.org/10.1140/epjp/s13360-021-01999-4
Yadegari, M., & Bak Khoshnevis, A. (2020a). Entropy generation analysis of turbulent boundary layer flow in different curved diffusers in air-conditioning systems.
European Physical Journal Plus,
135(6).
https://doi.org/10.1140/epjp/s13360-020-00545-y
Yadegari, M., & Bak Khoshnevis, A. (2020b). Numerical study of the effects of adverse pressure gradient parameter, turning angle and curvature ratio on turbulent flow in 3D turning curved rectangular diffusers using entropy generation analysis.
The European Physical Journal Plus,
135(7), 548.
https://doi.org/10.1140/epjp/s13360-020-00561-y
Yadegari, M., & Bak Khoshnevis, A. (2020c). A numerical study over the effect of curvature and adverse pressure gradient on development of flow inside gas transmission pipelines.
Journal of the Brazilian Society of Mechanical Sciences and Engineering,
42(8), 413.
https://doi.org/10.1007/s40430-020-02495-z
Yadegari, M., & Bak Khoshnevis, A. (2021). Investigation of entropy generation, efficiency, static and ideal pressure recovery coefficient in curved annular diffusers.
The European Physical Journal Plus,
136(1), 69.
https://doi.org/10.1140/epjp/s13360-021-01071-1
Zhang, Q., & Wang, X. (2023). Numerical Investigation of Aerodynamic Performances for NREL 5-MW Offshore Wind Turbine. Wind, 3(2), 191-212.