Baker, C., Jones, J., Lopez-Calleja, F., & Munday, J. (2004). Measurements of the cross wind forces on trains.
Journal of Wind Engineering and Industrial Aerodynamics,
92(7–8), 547–563.
https://doi.org/10.1016/j.jweia.2004.03.002
Chen, Z., Liu, T., Yan, C., Yu, M., Guo, Z., & Wang, T. (2019). Numerical simulation and comparison of the slipstreams of trains with different nose lengths under crosswind.
Journal of Wind Engineering and Industrial Aerodynamics,
190, 256–272.
https://doi.org/10.1016/j.jweia.2019.05.005
Deng, Z., Zhang, W., Zheng, J., Ren, Y., Jiang, D., Zheng, X., Zhang, J., Gao, P., Lin, Q., Song, B., & Deng, C. (2016). A high-temperature superconducting maglev ring test line developed in Chengdu, China.
IEEE Transactions on Applied Superconductivity,
26(6), 1–8.
https://doi.org/10.1109/tasc.2016.2555921
Ding, S., Liu, J., and Chen, D. (2023). Aerodynamic design of the 600 km/h high-speed maglev transportation system.
Journal of Experiments in Fluid Mechanics,
37(1), 1-8.
https://doi.org/10.11729/syltlx20220131
Dorigatti, F., Sterling, M., Baker, C., & Quinn, A. (2015). Crosswind effects on the stability of a model passenger train—A comparison of static and moving experiments.
Journal of Wind Engineering and Industrial Aerodynamics,
138, 36–51.
https://doi.org/10.1016/j.jweia.2014.11.009
Guo, H., Zhang, K., Xu, G., & Niu, J. (2023). Unsteady aerodynamic behaviour of high-speed maglev trains during plate braking in tailwind and headwind opening configurations.
International Journal of Rail Transportation, 1–18.
https://doi.org/10.1080/23248378.2023.2271478
Han, S., Zhang, J., Xiong, X., Ji, P., Zhang, L., Sheridan, J., & Gao, G. (2022). Influence of high-speed maglev train speed on tunnel aerodynamic effects.
Building and Environment,
223, 109460.
https://doi.org/10.1016/j.buildenv.2022.109460
Hemida, H., & Krajnović, S. (2009). Exploring flow structures around a simplified ICE2 train subjected to a 30° side wind using LES.
Engineering Applications of Computational Fluid Mechanics,
3(1), 28–41.
https://doi.org/10.1080/19942060.2009.11015252
Hu, X., Li, H., Zhou, X., Zhang, S., Li, H., & Deng, Z. (2024). Modeling and dynamic performance of distributed force in High-Temperature superconducting pinning magnetic levitation.
Physica Scripta,
99(10), 105220.
https://doi.org/10.1088/1402-4896/ad723a
Huang, Z., Zhou, Z., Chang, N., Chen, Z., & Wang, S. (2024). Aerodynamic features of high-speed maglev trains with different marshaling lengths running on a viaduct under crosswinds.
Computer Modeling in Engineering & Sciences,
140(1), 975–996.
https://doi.org/10.32604/cmes.2024.047664
Kou, L., Deng, Z., Li, H., Wang, L., Rao, Y., & Ke, Z. (2021). A Two-Dimension force model between High-Temperature Superconducting Bulk YBACUO and Halbach-Type Permanent Magnet guideway.
IEEE Transactions on Applied Superconductivity,
31(4), 1–8.
https://doi.org/10.1109/tasc.2021.3064274
Krajnović, S., Ringqvist, P., Nakade, K., & Basara, B. (2012). Large eddy simulation of the flow around a simplified train moving through a crosswind flow.
Journal of Wind Engineering and Industrial Aerodynamics, 110, 86–99.
https://doi.org/10.1016/j.jweia.2012.07.001
Li, T., Qin, D., & Zhang, J. (2019). Effect of RANS turbulence model on aerodynamic behavior of trains in crosswind.
Chinese Journal of Mechanical Engineering,
32(1).
https://doi.org/10.1186/s10033-019-0402-2
Li, Z., Wang, X., Ding, Y., Wang, J., Liu, P., & Deng, Z. (2023). Study on the dynamics characteristics of hts maglev train considering the aerodynamic loads under crosswinds.
Sustainability,
15(23), 16511.
https://doi.org/10.3390/su152316511
Lin, T. T., Yang, M. Z., Zhang, L., Wang, T. T., Liu, D. R., Tao, Y., & Zhong, S. (2024). Influence of the suspension gap on the wake characteristics of a 600 km/h superconducting maglev train.
Physics of Fluids,
36(2).
https://doi.org/10.1063/5.0190742
Liu, D., Liang, X., Zhou, W., Zhang, L., Lu, Z., & Zhong, M. (2022). Contributions of bogie aerodynamic loads to the crosswind safety of a high-speed train.
Journal of Wind Engineering and Industrial Aerodynamics,
228, 105082.
https://doi.org/10.1016/j.jweia.2022.105082
Lv, D., Liu, Y., Zheng, Q., Zhang, L., & Niu, J. (2023). Unsteady aerodynamic characteristics and dynamic performance of high-speed trains during plate braking under crosswind.
Nonlinear Dynamics,
111(15), 13919–13938.
https://doi.org/10.1007/s11071-023-08608-2
Mattos, L. S., Rodriguez, E., Costa, F., Sotelo, G. G., De Andrade, R., & Stephan, R. M. (2016). MagLev-cobra operational tests.
IEEE Transactions on Applied Superconductivity,
26(3), 1–4.
https://doi.org/10.1109/tasc.2016.2524473
Munoz-Paniagua, J., García, J., & Lehugeur, B. (2017). Evaluation of RANS, SAS and IDDES models for the simulation of the flow around a high-speed train subjected to crosswind.
Journal of Wind Engineering and Industrial Aerodynamics,
171, 50–66.
https://doi.org/10.1016/j.jweia.2017.09.006
Niu, J., Zhou, D., & Wang, Y. (2018). Numerical comparison of aerodynamic performance of stationary and moving trains with or without windbreak wall under crosswind.
Journal of Wind Engineering and Industrial Aerodynamics,
182, 1–15.
https://doi.org/10.1016/j.jweia.2018.09.011
Sotelo, G. G., De Oliveira, R. a. H., Costa, F. S., Dias, D. H. N., De Andrade, R., & Stephan, R. M. (2015). A full scale Superconducting Magnetic Levitation (MaGLEV) vehicle operational line.
IEEE Transactions on Applied Superconductivity,
25(3), 1–5.
https://doi.org/10.1109/tasc.2014.2371432
Suzuki, M., Tanemoto, K., & Maeda, T. (2003). Aerodynamic Characteristics of Train/Vehicles under Cross Winds. Journal of Web Engineering, 89, 505–508.
http://ci.nii.ac.jp/naid/10007252333
Tian, X., Xiang, H., Chen, X., & Li, Y. (2023). Dynamic response analysis of high-speed maglev train-guideway system under crosswinds.
Journal of Central South University,
30(8), 2757–2771.
https://doi.org/10.1007/s11771-023-5403-8
Wang, J., Wang, S., Zeng, Y., Huang, H., Luo, F., Xu, Z., Tang, Q., Lin, G., Zhang, C., Ren, Z., Zhao, G., Zhu, D., Wang, S., Jiang, H., Zhu, M., Deng, C., Hu, P., Li, C., Liu, F., Lian, J., Wang, X., Wang, L., Shen, X., Dong, X. (2002). The first man-loading high temperature superconducting Maglev test vehicle in the world.
Physica C Superconductivity,
378–381, 809–814.
https://doi.org/10.1016/s0921-4534(02)01548-4
Wang, J., Wang, S., Deng, C., Zheng, J., Song, H., He, Q., Zeng, Y., Deng, Z., Li, J., Ma, G., Jing, H., Huang, Y., Zhang, J., Lu, Y., Liu, L., Wang, L., Zhang, J., Zhang, L., Liu, M., Qin, Y., Zhang, Y. (2007). Laboratory-Scale high temperature Superconducting Maglev launch system.
IEEE Transactions on Applied Superconductivity,
17(2), 2091–2094.
https://doi.org/10.1109/tasc.2007.898367
Wang, S., Li, H., Wang, L., Huang, H., Deng, Z., & Zhang, W. (2021). Suspension parameters optimization of HTS maglev under random vibration.
IEEE Transactions on Applied Superconductivity,
31(8), 1–4.
https://doi.org/10.1109/tasc.2021.3094427
Wang, S., Wang, J., Wang, X., Ren, Z., Zeng, Y., Deng, C., Jiang, H., Zhu, M., Lin, G., Xu, Z., Zhu, D., & Song, H. (2003). The man-loading high-temperature superconducting maglev test vehicle.
IEEE Transactions on Applied Superconductivity,
13(2), 2134–2137.
https://doi.org/10.1109/tasc.2003.813017
Wang, X., Hu, X., Wang, J., Wang, L., Li, H., Deng, Z., & Zhang, W. (2023). Safety analysis of high temperature superconducting maglev train considering the aerodynamic loads under crosswinds.
Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science,
237(10), 2279–2290.
https://doi.org/10.1177/09544062221140033
Werfel, F. N., Floegel-Delor, U., Rothfeld, R., Riedel, T., Goebel, B., Wippich, D., & Schirrmeister, P. (2011). Superconductor bearings, flywheels and transportation.
Superconductor Science and Technology,
25(1), 014007.
https://doi.org/10.1088/0953-2048/25/1/014007
Zhou, P., Qin, D., Zhang, J., & Li, T. (2021). Aerodynamic characteristics of the evacuated tube maglev train considering the suspension gap.
International Journal of Rail Transportation,
10(2), 195–215.
https://doi.org/10.1080/23248378.2021.1885514