Aleksandra, A. R., & Alvin, G. (2022). On the drag reduction of road vehicles with trailing edge-integrated lobed mixers.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 236(7). 1515-1545.
https://doi.org/10.1177/09544070211039697
Ballabio, D., & Vasighi, M. (2012). A MATLAB toolbox for self organizing maps and supervised neural network learning strategies.
Chemometrics and Intelligent Laboratory Systems, 118, 24–32.
https://doi.org/10.1016/j.chemolab.2012.07.005
Bates, S., Hastie, T., & Tibshirani, R. (2023). Cross-validation: what does it estimate and how well does it do it?.
Journal of the American Statistical Association,
119(546), 1434-1445.
https://doi.org/10.1080/01621459.2023.2197686
Bayindirli, C. (2021). Reducing of pressure based drag force of a bus model by flow control rod in wind tunnel.
International Journal of Automotive Science and Technology, 5(4), 412-418.
https://doi.org/10.30939/ijastech..994351
Davis, S. C., & Boundy, R. G. (2022).
Transportation energy data book. Edition 40. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States).
https://doi.org/10.2172/1767864
Farghaly, M. B., Sarhan, H. H., & Abdelghany, E. S. (2023). Aerodynamic performance enhancement of a heavy trucks using experimental and computational investigation.
CFD Letters,
15(3),
http://doi.org/10.37934/cfdl.15.8.7394
Garcia-Ribeiro, D., Bravo-Mosquera, P. D., Ayala-Zuluaga, J. A., Martinez-Castañeda, D. F., Valbuena-Aguilera, J. S., Cerón-Muñoz, H. D., & Vaca-Rios, J. J. (2023). Drag reduction of a commercial bus with add-on aerodynamic devices
. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 237(7), 1623-1636.
https://doi.org/10.1177/09544070221098209
Levin, J., & Chen, S. H. (2023). Aerodynamic of a refrigerated truck and improvement to reduce its aerodynamic drag.
Proceedings of the Institution of Mechanical Engineers, Part D. https://doi.org/10.1177/09544070221113128
Lv, L. Y., Lu, Y. J., Wang, S., et al. (2019). Agent model technology and its application: current situation and prospect.
Chinese Journal of Mechanical Engineering, 60(3), 254-281.
http://dx.doi.org/10.3901/JME.2024.03.254.
McKay, M. D., Beckman, R. J., & Conover, W. J. (2000). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code.
Technometric, 42(1), 55-61.
http://dx.doi.org/10.1080/00401706.2000.10485979
Mohamed-Kassim, Z., & Filippone, A. (2010). Fuel savings on a heavy vehicle via aerodynamic drag reduction.
Transportation Research Part D: Transport and Environment, 15(5), 275-284.
https://doi.org/10.1016/j.trd.2010.02.010
Ratnaweera, A., Halgamuge, S. K., & Watson, H. C. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients.
IEEE Transactions on Evolutionary Computation,
8(3), 240-255.
https://doi.org/10.1109/TEVC.2004.826071
Schiavo, D., Trevizan, L. C., Pereira-Filho, E. R., & Nóbrega, J. A. (2009). Evaluation of the use of multiple lines for determination of metals in water by inductively coupled plasma optical emission spectrometry with axial viewing.
Spectrochimica Acta Part B: Atomic Spectroscopy,
64(6), 544-548.
https://doi.org/10.1016/j.sab.2009.05.009
Wang, J. Y., Geng, Y. L., Hui, Z., Li, T. H., Liu, Z. C., Li, J. C., Hu, X. J. (2020). Research on drag reduction of square-backed vehicle model based on plasma flow control.
Automotive Engineering, 42 (6), 753-758.
https://doi.org/10.19562/j.chinasae.qcgc.2020.06.007
Wang, Y., Wu, C., Tan, G., & Deng, Y. (2017). Reduction in the aerodynamic drag around a generic vehicle by using a non-smooth surface.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231(1), 130-144.
https://doi.org/10.1177/0954407016636970
Wiedemann, J. (1996). The influence of ground simulation and wheel rotation on aerodynamic drag optimization-potential for reducing fuel consumption.
SAE Transactions, 810-819.
https://doi.org/10.3354/cr030079
Willmott, C., & latsuura, K. (2005) Advantages of the mean absolute error (MAE) over the root mean square eror (RMSE) in assessing average model performance.
Climate Research,
30(1)79-82.
https://doi.org/10.3354/cr030079
Yadegari, M., & Bak Khoshnevis, A. (2021). Numerical and experimental study of characteristics of the wake produced behind an elliptic cylinder with trip wires.
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 45, 265-285.
https://doi.org/10.1007/s40997-020-00373-6
Yadegari, M., Bak Khoshnevis, A., & Boloki, M. (2023). An experimental investigation of the effects of helical strakes on the characteristics of the wake around the circular cylinder.
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering,
47(1), 67-80.
https://doi.org/10.1007/s40997-022-00494-0
Yang, W. Y., Cao, W., Kim, J., Park, K. W., Park, H. H., Joung, J., & Im, T. (2020).
Applied numerical methods using MATLAB. John Wiley & Sons.
https://doi.org/10.5860/choice.43-1615
You, D., & Moin, P. A. (2009). Dynamic globalcoefficient subgrid-scale model for large-eddy simulation of turbulent scalar transport in complexgeometries.
Physics of Fluids, 21(4).
https://doi.org/10.1063/1.3115068