«« Back

Influence of Turbulence in Aorta-like Tube: Computational and Experimental Study
Author(s): Jiří Jagoš, Jiří Kohút, Michal Kotek, Pavel Skácel, Jiří Burša
Keywords: Pulsatile flow; Pulse wave velocity; Compliant tube; Low Re turbulent model; Boundary condition.
The presented paper aims at comparison of modelling approaches to a fluid flow in aorta-like tube; it investigates their influence on the shape of the velocity profiles and waveforms, and consequently on wall shear stress. Comparisons of computational results between rigid and compliant tubes with laminar and low Re turbulent models of fluid are presented. The results were validated with PIV experimental data through the velocity profile in the middle of the tube for both cases (rigid and compliant) and the overall agreement was very good, almost perfect for the rigid case. Frequency of the pulse pump in the experimental circuit was 1Hz, the diameter of the tube ~ 20 mm, and maximum deformation of the compliant tube during a period was 12%. The turbulent model improved the agreement with the experimental data by flattening the velocity profiles in both cases, but the effect was much more pronounced for the compliant tube, especially during the deceleration phase. This work confirms the hypothesis stated by Brindise and Vlachos (2018) that a longer deceleration phase triggers transition to turbulence. We put foundations for extension of this hypothesis to compliant tubes where this conclusion was confirmed for physiological Re and Wo numbers. The main outputs of this study are: (i) the length of deceleration phase should be considered (in addition to the geometry or severity of stenosis) in decision whether fluid simulations should be performed with or without laminar flow assumption; (ii) for fluid simulations of blood vessels considering their compliance, a special care should be devoted to time synchronization between BCs to prevent unphysiological waveforms.

Journal of Applied Fluid Mechanics

The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating.