«« Back

Fluid Flow and Heat Transfer Characteristics Investigation in the Shell Side of the Branch Baffle Heat Exchanger
Author(s): Ke Wang, Jiaqi Liu, Zunchao Liu, Wei Chen, Xingchen Li, Lu Zhang
Keywords: Heat exchanger, Branch baffle, CFD, Flow manner, Pressure drop.
An improved shell-and-tube heat exchanger with branch baffles is proposed in this work. Numerical simulation has been implemented to investigate the fluid flow and heat transfer performance. The accuracy of modeling approach has been confirmed by an experimental approach using a Laser Doppler Velocimeter system. Flow field, temperature field and pressure field are displayed for study of the physical behavior of fluid flow and thermal transport. Heat transfer coefficient, pressure drop and efficiency evaluation criteria in the shell side are analyzed. In contrast with shell-and-tube heat exchanger with segmental baffles and shutter baffles, pressure loss in the proposed heat exchanger with branch baffles has been dramatically improved, accompanied by a slight decrease in heat transfer coefficient under the same volume flow rate. The efficiency evaluation criteria of the heat exchanger with branch baffles are 28%-31%,13.2%-14.1% higher than those with segmental baffles and shutter baffles, respectively. The current heat exchanger structure provides a reference for the future optimization design to reach energy saving and emission reduction.

Journal of Applied Fluid Mechanics

The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating.