«« Back

Multiscale analysis of hydrodynamic step bearing with ultra low surface separations
Author(s): Chang Cao, Y Zhang
Keywords: Bearing; Hydrodynamics; Load; Model; Multiscale; Pressure
The paper presents the multiscale analysis for the hydrodynamic step bearing with ultra low surface clearances where only the physical adsorbed layer is present in the outlet zone and the continuum fluid flow mainly occurs in the inlet zone. This bearing can occur under heavy loads. The flow in the outlet zone is described by the nanoscale flow equation, while the flow in the inlet zone is described by the multiscale flow equation incorporating both the adsorbed layer flow and the intermediate continuum fluid flow. The pressure and carried load of the bearing were derived. Exemplary calculations show that the fluid-bearing surface interaction has the strongest influence on the pressure and carried load of this bearing when the bearing surface clearance is as small as possible, the bearing step size is close to the surface clearance in the outlet zone and the value of the geometrical parameter PSI is 0.5. For the strong fluid-bearing surface interaction, the carried load of the bearing can be 10 times higher than that calculated from the classical hydrodynamic lubrication theory.

Journal of Applied Fluid Mechanics

The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating.

Read more...