Effect of the Circumferential Position of Balance Holes on the Cavitation Performance and Cavitation Erosion of Centrifugal Pump

Document Type : Regular Article

Authors

1 Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, China

2 School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China

3 Key Laboratory of Fluid and Power Machinery (Xihua University), Ministry of Education, Chengdu, 610039, China

Abstract

The flow field of a low specific speed centrifugal pump is investigated in the present work based on numerical simulation to establish the effect of circumferential positions of balance holes on cavitation behaviour and cavitation erosion of the centrifugal pump. The distribution of the pressure around balance holes is studied, the initiation and development of cavitation at different balance hole schemes are compared, and the distribution of cavitation erosion for the original pump and the ideal scheme is also predicted. The results show that when the NPSHa is high, there is low pressure zone in balance hole, which leads to cavitation in the pump. The cavitation performance of pump is improved by gradually moving balance holes away from blade suction surface, as this reduces low pressure zones around the balance hole and incipient cavitation. Under critical cavitation conditions, the cavitation shows a tendency to collapse as the angle (φ) of circumferential position of balance holes decreases, and the proportion of the higher vapor volume fraction in cavitation core zones also decreases. The cavitation erosion zones on blade surfaces are predicted by using the Erosive Power Method (EPM). The erosion impact of the original pump is more pronounced in the comparative results.

Keywords

Main Subjects


Aktas, B., Atlar, M., Fitzsimmons, P., & Shi, W. (2018). An advanced joint time-frequency analysis procedure to study cavitation-induced noise by using standard series propeller data. Ocean Engineering, 170, 329-350. https://doi.org/10.1016/j.oceaneng.2018.10.026
Arabnejad, M. H., Svennberg, U., & Bensow, R. E. (2021). Numerical assessment of cavitation erosion risk using incompressible simulation of cavitating flows. Wear, 464, 203529. https://doi.org/10.1016/j.wear.2020.203529
Brennen, C. E. (2011). Hydrodynamics of pumps. Cambridge University Press. https://doi.org/10.1017/CBO9780511976728
Cao, W., Yang, X., & Jia, Z. (2022). Numerical simulation of cavitation flow in a low specific-speed centrifugal pump with different diameters of balance holes. Journal of Marine Science and Engineering, 10(5), 619. https://doi.org/10.3390/jmse10050619
Chen, Z. X., Hu, H. X., Guo, X. M., & Zheng, Y. G. (2022). Effect of groove depth on the slurry erosion of V-shaped grooved surfaces. Wear, 488, 204133. https://doi.org/10.1016/j.wear.2021.204133
Cheng, X., Chang, Z., & Jiang, Y. (2020). Study on the influence of the specific area of balance hole on cavitation performance of high-speed centrifugal pump. Journal of Mechanical Science and Technology, 34, 3325-3334. https://doi.org/10.1007/s12206-020-0725-z
Cui, B. L., Han, X. T., & An, Y. T. (2022). Numerical simulation of unsteady cavitation flow in a low-specific-speed centrifugal pump with an inducer. Journal of Marine Science and Engineering, 10(5), 630. https://doi.org/10.3390/jmse10050630
Dular, M., Stoffel, B., & Širok, B. (2006). Development of a cavitation erosion model. Wear, 261(5-6), 642-655. https://doi.org/10.1016/j.wear.2006.01.020
Fortes Patella, R., & Reboud, J. L. (1998). A new approach to evaluate the cavitation erosion power. https://doi.org/10.1115/1.2820653
Gangipamula, R., Ranjan, P., & Patil, R. S. (2022). Study on fluid dynamic characteristics of a low specific speed centrifugal pump with emphasis on trimming operations. International Journal of Heat and Fluid Flow, 95, 108952. https://doi.org/10.1016/j.ijheatfluidflow.2022.108952
Gao, B., Guo, P., Zhang, N., Li, Z., & Yang, M. (2017). Experimental investigation on cavitating flow induced vibration characteristics of a low specific speed centrifugal pump. Shock and Vibration, 2017. https://doi.org/10.1155/2017/6568930
Haosheng, C., Jiang, L., Darong, C., & Jiadao, W. (2008). Damages on steel surface at the incubation stage of the vibration cavitation erosion in water. Wear, 265(5-6), 692-698. https://doi.org/10.1016/j.wear.2007.12.011
Hu, Q. X., Yang, Y., & Shi, W. D. (2020). Cavitation simulation of centrifugal pump with different inlet attack angles. International Journal of Simulation Modelling, 19(2), 279-290. https://doi.org/10.2507/ISIMM19-2-516
Huang, M., Kim, K., & Suh, S. H. (2018). Numerical and experimental investigation of cavitation flows in a multistage centrifugal pump. Journal of Mechanical Science and Technology, 32(3), 1071-1078. https://doi.org/10.1007/S12206-018-0209-6
Köksal, Ç. S., Usta, O., Aktas, B., Atlar, M., & Korkut, E. (2021). Numerical prediction of cavitation erosion to investigate the effect of wake on marine propellers. Ocean Engineering, 239, 109820. https://doi.org/10.1016/j.oceaneng.2021.109820
Li, L. M., Wang, Z. D., Li, X. J., Wang, Y. P., & Zhu, Z. C. (2021). Very large eddy simulation of cavitation from inception to sheet/cloud regimes by a multiscale model. China Ocean Engineering, 35(3), 361-371. https://doi.org/10.1007/s13344-021-0033-0
Li, L., Pei, C., Wang, Z., Lin, Z., Li, X., & Zhu, Z. (2024). Assessment of cavitation erosion risk by Eulerian–Lagrangian multiscale modeling. International Journal of Mechanical Sciences, 262, 108735. https://doi.org/10.1016/j.ijmecsci.2023.108735
Li, Z. R., Pourquie, M., & Van Terwisga, T. (2014). Assessment of cavitation erosion with a URANS method. Journal of Fluids Engineering, 136(4), 041101. https://doi.org/10.1115/1.4026195
Lin, Y., Li, X., Zhu, Z., Wang, X., Lin, T., & Cao, H. (2022). An energy consumption improvement method for centrifugal pump based on bionic optimization of blade trailing edge. Energy, 246, 123323. https://doi.org/10.1016/j.energy.2022.123323
Luo, X. W., Ji, B., & Tsujimoto, Y. (2016). A review of cavitation in hydraulic machinery. Journal of Hydrodynamics, 28(3), 335-358. https://doi.org/10.1016/S1001-6058(16)60638-8
Luo, X., Xie, H., Feng, J., Ge, Z., & Zhu, G. (2022). Influence of the balance hole on the performance of a gas–liquid two–phase centrifugal pump. Ocean Engineering, 244, 110316. https://doi.org/10.1016/j.oceaneng.2021.110316
Luo, X., Zhang, Y., Peng, J., Xu, H., & Yu, W. (2008). Impeller inlet geometry effect on performance improvement for centrifugal pumps. Journal of mechanical science and technology, 22, 1971-1976. https://doi.org/10.1007/s12206-008-0741-x
Melissaris, T., Schenke, S., Bulten, N., & van Terwisga, T. J. (2020). On the accuracy of predicting cavitation impact loads on marine propellers. Wear, 456, 203393. https://doi.org/10.1016/j.wear.2020.203393
Peters, A., Sagar, H., Lantermann, U., & el Moctar, O. (2015). Numerical modelling and prediction of cavitation erosion. Wear, 338, 189-201. https://doi.org/10.1016/j.wear.2015.06.009
Usta, O., & Korkut, E. (2019). Prediction of cavitation development and cavitation erosion on hydrofoils and propellers by detached eddy simulation. Ocean Engineering, 191, 106512. https://doi.org/10.1016/j.oceaneng.2019.106512
Wang, D. W., Liu, Z. L., Han, W., & Fu, Y. (2021). Effect of adjusting balance hole to cavitation area on cavitation performance of a centrifugal pump. International Journal of Fluid Machinery and Systems, 14(3), 289-299. https://doi.org/10.5293/IJFMS.2021.14.3.289
Wang, W. T., Lu, H., & Meng, G. Q. Q. G. (2018, July). Pressure fluctuation characteristics induced by cavitation in a centrifugal pump [Conference session]. Asian Working Group- IAHR's Symposium on Hydraulic Machinery and Systems, Beijing, China. https://doi.org/10.1088/1755-1315/163/1/012040
Wang, Z., Cheng, H., Bensow, R. E., Peng, X., & Ji, B. (2023). Numerical assessment of cavitation erosion risk on the Delft twisted hydrofoil using a hybrid Eulerian-Lagrangian strategy. International Journal of Mechanical Sciences, 259, 108618. https://doi.org/10.1016/j.ijmecsci.2023.108618
Wang, Z., Li, L., Li, X., & Zhu, Z. (2022, April). Numerical simulation of cavitating flow around a twist hydrofoil focusing on the erosion behaviour. Journal of Physics: Conference Series (Vol. 2217, No. 1, p. 012011). IOP Publishing. https://doi.org/10.1088/1742-6596/2217/1/012011
Wei, Y., Yang, Y., Zhou, L., Jiang, L., Shi, W., & Huang, G. (2021). Influence of impeller gap drainage width on the performance of low specific speed centrifugal pump. Journal of Marine Science and Engineering, 9(2), 106. https://doi.org/10.3390/jmse9020106
Yin, T., Pavesi, G., Pei, J., & Yuan, S. (2021). Numerical investigation of unsteady cavitation around a twisted hydrofoil. International Journal of Multiphase Flow, 135, 103506. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103506
Zhang, J., Li, G., Mao, J., Yuan, S., Qu, Y., & Jia, J. (2018). Effects of the outlet position of splitter blade on the flow characteristics in low-specific-speed centrifugal pump. Advances in Mechanical Engineering, 10(7), 1687814018789525. https://doi.org/10.1177/1687814018789525
Zhao, J. J., Mu, J. G., Zheng, S. H., Lu, H. Q., & Wang, H. (2012). The impact of balance hole radial position of centrifugal pump on axial force and external characteristics. Applied Mechanics and Materials, 130, 1691-1695. https://doi.org/10.4028/www.scientific.net/AMM.130-134.1691
Zhao, W., Yu, J., Xu, Y., Xu, Z., & Wang, G. (2020). Effect of hub-fitted tiny blade in centrifugal pump on cavitation suppression. Journal of Harbin Engineering University, 41(12), 1827-1833. http://doi.org/10.11990/jheu.201905025
Zhu, B., & Chen, H. X. (2012). Cavitating suppression of low specific speed centrifugal pump with gap drainage blades. Journal of Hydrodynamics, 24(5), 729-736. https://doi.org/10.1016/S1001-6058(11)60297-7
Zhu, H., Qiu, N., Wang, C., Si, Q., Wu, J., Deng, F., & Liu, X. (2021). Prediction of cavitation evolution and cavitation erosion on centrifugal pump blades by the DCM-RNG method. Scanning, 2021. https://doi.org/10.1155/2021/6498451
Zwart, P. J., Gerber, A. G., & Belamri, T. (2004, May). A two-phase flow model for predicting cavitation dynamics. Fifth international conference on multiphase flow (Vol. 152). Yokohama, Japan.