Numerical Modal Analysis of the Correlation Between Spanwise Vortex Shedding and Far-field Aeolian Noise for Square and Circular Wall-mounted Cylinders

Document Type : Regular Article

Authors

1 Key Laboratory of Aero-Acoustics of Ministry of Industry and Information Technology, Beihang University, Beijing 100191, China

2 School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

3 Sino-French Engineer School, Beihang University, Beijing 100191, China

10.47176/jafm.18.2.2791

Abstract

For square and circular finite wall-mounted cylinders (FWMCs) with an aspect ratio exceeding 10, the vortex shedding near the tip area leads to the generation of multiple tonal noises. The quantitative analysis of the spanwise distributions of the vortex modal energy with different frequencies was quite limited. This study employs dynamic mode decomposition to decompose the wake of FWMC into distinct frequencies to evaluate the modal energy distribution of pressure fluctuations at each frequency along the spanwise direction. Large eddy simulation combined with the Ffowcs Williams–Hawkings (FW–H) acoustics analogy is applied to a square and a circular FWMC with aspect ratio of 13.6 at a Reynolds number of 2.3 × 104. Two indicators to describe the spanwise energy contribution are proposed. The results reveal that, for square FWMC, the primary modal energy corresponding to Strouhal number ( St ) equal to 0.14 is concentrated below 30% of the cylinder height  owing to the 3D effect. A transition mode of  St ≈ 0.12 is identified in the midspan (0.3 L–0.7L ) without significant contribution to far-field noise spectrum. For circular FWMC, the modal energy is distributed over several frequencies, vortices cells corresponding to the main noise band (0.2 <St< 0.23) are distributed below 0.7 , and the vortices cells in the noise band of 0.15 <St < 0.19 distributed from the midspan to the upper part in a dispersed manner. The noise band with   St≈ 0.08 corresponds to tip-associated vortices gathering above 0.8 . 

Keywords

Main Subjects


Afgan, I., Moulinec, C., Prosser, R., & Laurence, D. (2007). Large eddy simulation of turbulent flow for wall mounted cantilever cylinders of aspect ratio 6 and 10. International Journal of Heat and Fluid Flow, 28(4), 561–574. https://doi.org/10.1016/j.ijheatfluidflow.2007.04.014.
Akkermans, R. A. D., Ewert, R. S., Moghadam, M. A., Dierke, J., & Buchmann, N. (2015). Overset DNS with application to sound source prediction. In S. Girimaji (Eds.), Notes on Numerical Fluid Mechanics and Multidisciplinary Design. (pp. 59-68). Springer. https://doi.org/10.1007/978-3-319-15141-0_4.
Ananthan, V. B., & Akkermans, R. A. D. (2023). Trailing edge noise reduction using bio-inspired finlets. Journal of Sound and Vibration, 549, 117553. https://doi.org/10.1016/j.jsv.2023.117553.
Ananthan, V. B., Akkermans, R. A. D., Hu, T., Liu, P. Q., & Rathje, N. (2022). Trailing-edge noise reduction potential of a locally applied shallow dimpled surface. Journal of Sound and Vibration, 525, 116745. https://doi.org/10.1016/j.jsv.2022.116745.
Ananthan, V. B., Bernicke, P., Akkermans, R. A. D., Hu, T., & Liu, P. Q. (2020). Effect of porous material on trailing edge sound sources of a lifting airfoil by zonal Overset-LES. Journal of Sound and Vibration, 480, 115386. https://doi.org/10.1016/j.jsv.2020.115386.
Ansys Inc. ANSYS FLUENT (version 2021R1) [Computer software]. https://www.ansys.com/resource-center/webinar/ansys-2021-r1-fluent-update.
Becker, S., Hahn, C., Kaltenbacher, M., & Lerch, R. (2008). Flow-induced sound of wall-mounted cylinders with different geometries. AIAA Journal, 46(9), 2265–2281. https://doi.org/10.2514/1.34865.
Bernicke, P., Akkermans, R. A. D., Ananthan, V. B., Ewert, R., Dierke, J., & Rossian, L. (2019). A zonal noise prediction method for trailing-edge noise with a porous model. International Journal of Heat and Fluid Flow, 80. 108469. https://doi.org/10.1016/j.ijheatfluidflow.2019.108469.
Bodling, A., & Sharma, A. (2019). Numerical investigation of low-noise airfoils inspired by the down coat of owls. Bioinspir. Biomim. 14, 016013. https://doi.org/10.1088/1748-3190/aaf19c.
Bourgeois, J. A., Noack, B. R., & Martinuzzi, R. J. (2013). Generalized phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake. Journal of Fluid Mechanics, 736, 316. https://doi.org/10.1017/jfm.2013.494.
Bourgeois, J. A., Sattari, P., & Martinuzzi, R. J. (2011). Alternating half-loop shedding in the turbulent wake of a finite surface-mounted square cylinder with a thin boundary layer. Physics of Fluids, 23(9), 095101. https://doi.org/10.1063/1.3623463.
Cao, Y., Ping, H., Tamura, T., & Zhou, D. (2022). Wind peak pressures on a square-section cylinder: flow mechanism and standard/conditional POD analyses. Journal of Wind Engineering and Industrial Aerodynamics, 222, 104918 https://doi.org/10.1016/j.jweia.2022.104918.
Cao, Y., Tamura, T., & Kawai, H. (2019). Investigation of wall pressures and surface flow patterns on a wall-mounted square cylinder using very high-resolution Cartesian mesh. Journal of Wind Engineering and Industrial Aerodynamics, 188, 1–18. https://doi.org/10.1016/j. jweia.2019.02.013.
Chen, G., Li X., Sun, B., & Liang, X. (2022). Effect of incoming boundary layer thickness on the flow dynamics of a square finite wall-mounted cylinder. Physics of Fluids, 34, 015105. https://doi.org/10.1063/5.0076541.
Dawi, A. H., & Akkermans, R. A. D. (2018). Direct and integral noise computation of two square cylinders in tandem arrangement. Journal of Sound and Vibration, 436, 138–154. https://doi.org/10.1016/j.jsv.2018.09.008.
Duan, F., & Wang, J. J. (2021). Fluid–structure–sound interaction in noise reduction of a circular cylinder with flexible splitter plate. Journal of Fluid Mechanics, 920, A6. https://doi.org/10.1017/jfm.2021.403.
Frederich, O., Wassen, E., Thiele, F., Jensch, M., Brede, M., Huttmann, F., & Leder, A. (2008). Numerical simulation of the flow around a finite cylinder with ground plate in comparison to experimental measurements. [Conference session]. Contributions to the 15th STAB/DGLR Symposium, Darmstadt, Germany. https://doi.org/10.1007/978-3-540-74460-3_43
Geyer, T. F. (2020). Vortex shedding noise from finite, wall-mounted, circular cylinders Modified with Porous Material. AIAA Journal 58(5), 2019-2695. https://doi.org/10.2514/1.J058877.
Griffin, O. M. (1985). Vortex shedding from bluff bodies in a shear flow: a review. Journal of Fluids Engineering, 107, 298–306. https://doi.org/10.1115/1.3242481.
Hosseini, Z., Bourgeois, J. A., & Martinuzzi, R. J. (2013). Large-scale structure in dipole and quadrupole wake of a wall-mounted finite rectangular cylinder. Experiments in Fluids, 54(9) http://dx.doi.org/10.1007/s00348-013-1595-2.
Inoue, O., & Hatakeyama, N. (2002). Sound generation by a two-dimensional circular cylinder in a uniform flow. Journal of Fluid Mechanics, 471, 285-314. https://doi.org/10.1017/S0022112002002124.
Jeong, J., & Hussain, F. (1995). On the identification of a vortex. Journal of Fluid Mechanics, 285, 69–94. https://doi.org/10.1017/S0022112095000462.
Kadivar, E., Dawoodian, M., Lin, Y., & Moctar, O. (2024). Experiments on cavitation control around a cylinder using biomimetic riblets. Journal of Marine Science and Engineering, 12, 293. https://doi.org/10.3390/jmse12020293.
Kato, C., Iida, A., Takano, Y., Fujita, H., & Ikegawa, M. (1993). Numerical prediction of aerodynamic noise radiated from low Mach number turbulent wake, AIAA-Paper, 93-145. https://doi.org/10.2514/6.1993-145
Kawamura, T., Hiwada, M., Hibino, T., Mabuchi, I., & Kumada, M. (1984). Flow around a finite circular cylinder on a flat plate: cylinder height greater than turbulent boundary layer thickness. Bulletin of JSME, 27, 2142-2151. https://doi.org/10.1299/jsme1958.27.2142
Kim, W. W., & Menon, S. (1997, January). Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. [Conference session] Technical Report AIAA-97-0210. 35th Aerospace Sciences Meeting, Reno, NV. American Institute of Aeronautics and Astronautics.
King, W. F., & Pfizenmaier, E. (2009). An experimental study of sound generated by flows around cylinders of different cross-section. Journal of Sound and Vibration, 328(3), 318–337. https://doi.org/10.1016/j.jsv.2009.07.034.
Kitagawa, T., Fujina, Y., Kimura, K., & Mizuno, Y. (2002). Wind pressures measurement on end-cell-induced vibration of a cantilevered circular cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 90(4–5), 395–405, http://dx.doi.org/10.1016/S0167-6105(01)00200-8.
Krajnović, S. (2011). Flow around a tall finite cylinder explored by large eddy simulation. Journal of Fluid Mechanics, 676, 294–317. https://doi.org/10.1017/S0022112011000450.
Kitagawa, T., Fujino, Y., & Kimura, K. (1999). Effects of free-end condition on end-cell-induced vibration. Journal of Fluids and Structures, 13(4), 499-518. https://doi.org/10.1006/jfls.1999.0214.
Lee, C. W. (1997). Wake structure behind a circular cylinder with a free end. [Conference session] Proceedings of the 35th Heat Transfer and Fluid Mechanics Institute, Sacramento, CA. Heat Transfer and Fluid Mechanics Institute California State University, 35, 241–251.
Lenz, B., Magalhaes, J. F., & Suh S. (2019). Numerical simulation of flow-induced sound from a wall-mounted finite length cylinder. The Journal of the Acoustical Society of America, 146(4), 2838–2838. https://doi.org/10.1121/1.5136838.
Luo, S. C. (1993). Flow past a finite length circular cylinder. [Conference session]. Third International Offshore and Polar Engineering Conference.
Maryami, R., & Liu, Y. (2024). Cylinder flow and noise control by active base blowing. Journal of Fluid Mechanics, 985, A10. https://doi.org/10.1017/jfm.2024.261.
Maryami, R., Arcondoulis, E. J. G., Guo, J., & Liu, Y. (2024). Experimental investigation of active local blowing on the aerodynamic noise reduction of a circular cylinder. Journal of Sound and Vibration, 578, 118360. https://doi.org/10.1016/j.jsv.2024.118360.
Moradi, M. A., & Mojra, A. (2024). Flow and noise control of a cylinder using grooves filled with porous material. Physics of Fluids, 36, 045133. https://doi.org/10.1063/5.0205125.
Moreau, D. J., & Doolan, C. J. (2013). Flow-induced sound of wall-mounted finite length cylinders. AIAA Journal, 51(10), 2493–2502. https://doi.org/10.2514/1.J052391.
Noack, B. R. (1991). On cell formation in vortex streets. Journal of Fluid Mechanics, 227, 293-308. https://doi.org/10.1017/S0022112091000125.
Park, C. W., & Lee, S. J. (2000). Free end effects on the near wake flow structure behind a finite circular cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 88(2-3), 231-246. https://doi.org/10.1016/S0167-6105(00)00051-9.
Park, C. W., & Lee, S. J. (2002). Flow structure around a finite circular cylinder embedded in various atmospheric boundary layers. Fluid Dynamics Research, 30(4), 197-215. https://doi.org/10.1016/S0169-5983(02)00037-0.
Park, C. W., & Lee, S. J. (2004). Effects of free-end corner shape on flow structure around a finite cylinder. Journal of Fluids and Structures, 19(2), 141–158. https://doi.org/10.1016/j. jfluidstructs. 2003.12.001.
Pattenden, R. J., Turnock, S. R., & Zhang, X. (2005). Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane. Experiments in Fluids, 39(1),10–21. http://dx.doi.org/10.1007/s00348-005-0949-9.
Porteous, R., Moreau, D. J., & Doolan, C. J. (2014). A review of flow-induced noise from finite wall-mounted cylinders. Journal of Fluids and Structures, 51, 240–254. https://doi.org/10.1016/j.jfluidstructs.2014.08.012.
Porteous, R., Moreau, D. J., & Doolan, C. J. (2017). The aeroacoustics of finite wall-mounted square cylinders. Journal of Fluid Mechanics, 832, 287–328. https://doi.org/10.1017/jfm.2017.682.
Qin, D., Li, T., Zhang, J. & Zhou, N. (2023). Numerical study on aerodynamic drag and noise of high-speed pantograph by introducing spanwise waviness. Engineering Applications of Computational Fluid Mechanics, 17, 1, 2260463. https://doi.org/10.1080/19942060.2023.2260463.
Saeedi, M., & Wang, B .C. (2016). Large-eddy simulation of turbulent flow around a finite-height wall-mounted square cylinder within a thin boundary layer. Flow, Turbulence and Combustion, 97(2), 513–538. https://doi.org/10.1007/s10494-015-9700-7.
Sakamoto, H., & Arie, M. (1983). Vortex shedding from a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer. Journal of Fluid Mechanics, 126, 147–165. https://doi.org/10.1017/S0022112083000087.
Sattari, P., Bourgeois, J. A., & Martinuzzi, R. J. (2012). On the vortex dynamics in the wake of a finite surface-mounted square cylinder. Experiments in Fluids, 52(5), 1149–1167. https://doi.org/10.1007/s00348-011-1244-6
Seo, J. H., & Moon, Y. J. (2007). Aerodynamic noise prediction for long-span bodies. Journal of Sound and Vibration, 306(3-5), 564-579. https://doi.org/10.1016/j.jsv.2007.05.042.
Sumner, D., Heseltine J. L., & Dansereau O. J. P. (2004). Wake structure of a finite circular cylinder of small aspect ratio. Experiments in Fluids, 37, 720. http://dx.doi.org/10.1007/s00348-004-0862-7.
Wang, C. H., & Li, Y. (2023). Control of a circular cylinder flow using attached solid/perforated splitter plates at deflection angles. Physics of Fluids, 35, 105109. https://doi.org/10.1063/5.0165632.
Wang, H. F., & Zhou, Y. (2009). The finite-length square cylinder near wake. Journal of Fluid Mechanics, 638: 453–490. https://doi.org/10.1017/S0022112009990693.
Wang, H. F., Zhou, Y., Chan, C. K., & Lam, K. S. (2006). Effect of initial conditions on interaction between a boundary layer and a wall-mounted finite-length-cylinder wake. Physics of Fluids, 18(6), 561 https://doi.org/10.1063/1.2212329.
Xiao, C., & Tong F. (2023). Experiment on noise reduction of a wavy cylinder with a large spanwise wavelength and large aspect ratio in aeroacoustic wind tunnels. Applied Sciences, 13, 6061. https://doi.org/10.3390/app13106061.
Yauwenas, Y., Porteous, R., Moreau, D. J., & Doolan, C. J. (2019). The effect of aspect ratio on the wake structure of finite wall-mounted square cylinders. Journal of Fluid Mechanics, 875, 929-960. https://doi.org/10.1017/ jfm.2019.522.
Zheng, C. T., Zhou, P., Zhong, S. Y., & Zhang, X. (2023). Experimental investigation on cylinder noise and its reductions by identifying aerodynamic sound sources in flow fields. Physics of Fluids, 35, 035103. https://doi.org/10.1063/5.0138080.