Abbas, F., Yan, Y., & Wang, L. (2020).
Mass flow measurement of pneumatically conveyed solids through multi-modal sensing and machine learning. 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC),
IEEE, New York, NY, 1–6.
https://ieeexplore.ieee.org/document/9128576##
Alkassar, Y., Agarwal, V. K., Pandey, R. K., & Behera, N. (2020). Experimental study and Shannon entropy analysis of pressure fluctuations and flow mode transition in fluidized dense phase pneumatic conveying of fly ash.
Particuology, 49, 169-178.
https://doi.org/10.1016/j.partic.2019.03.003##
Alkassar, Y., Agarwal, V. K., Pandey, R. K., & Behera, N. (2021a). Influence of particle attrition on erosive wear of bends in dilute phase pneumatic conveying.
Wear, 476, 203594.
https://doi.org/10.1016/j.wear.2020.203594##
Alkassar, Y., Agarwal, V. K., Pandey, R., & Behera, N. (2021b). Analysis of dense phase pneumatic conveying of fly ash using CFD including particle size distribution.
Particulate Science Technology, 39(3), 322–337.
https://doi.org/10.1080/02726351.2020.1727592##
Behera, N., Agarwal, V. K., Jones, M. G., & Williams, K. C. (2013a). CFD modeling and analysis of dense phase pneumatic conveying of fine particles including particle size distribution.
Powder Technology, 244, 30-37.
https://doi.org/10.1016/j.powtec.2013.04.005##
Behera, N., Agarwal, V. K., Jones, M., & Williams, K. C. (2015). Power spectral density analysis of pressure fluctuation in pneumatic conveying of powders.
Powder Technology, 33 (5), 510-516.
https://doi.org/10.1080/02726351.2015.1008079##
Behera, N., Agarwal, V., Jones, M., & Williams, K. (2013b). Modeling and analysis of solids friction factor for fluidized dense phase pneumatic conveying of powders.
Particulate Science Technology, 31 (2), 136–146.
https://doi.org/10.1080/02726351.2012.672544##
Chang, Y., Lin, J., Shieh, J., & Abbod, M. (2012). Optimization the initial weights of artificial neural networks via genetic algorithm applied to hip bone fracture prediction.
Advances in Fuzzy Systems, 2012, Article ID 951247.
https://doi.org/10.1155/2012/951247##
Chen, B. L., Yang, T. F., Sajjad, U., Ali, H. M., & Yan, W. M. (2023). Deep learning-based assessment of saturated flow boiling heat transfer and two-phase pressure drop for evaporating flow.
Engineering Analysis with Boundary Elements, 151, 519-537.
https://doi.org/10.1016/j.enganabound.2023.03.016##
Davydzenka, T., & Tahmasebi, P. (2022). High-resolution fluid–particle interactions: a machine learning approach.
Journal of Fluid Mechanics, 938, A20.
https://doi.org/10.1017/jfm.2022.174##
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017).
Lightgbm: A highly efficient gradient boosting decision tree. Proceedings of the advances in neural information processing systems, NeurIPS, 3146–3154.
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf##
Kidd, A. J., Zhang, J., & Cheng, R. (2020). A low-error calibration function for an electrostatic gas-solid flow meter obtained via machine learning techniques with experimental data.
Energy and Built Environment, 1(2), 224-232.
https://doi.org/10.1016/j.enbenv.2020.02.003##
Kim, J. Y., Kim, D., Li, Z. J., Dariva, C., Cao, Y., & Ellis, N. (2023). Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach.
Energy, 263:125900.
https://doi.org/10.1016/j.energy.2022.125900##
Kim, Y., & Lee, K. (2020). Pressure loss optimization to reduce pipeline clogging in bulk transfer system of offshore drilling rig.
Applied Sciences, 10(21), 7515.
https://doi.org/10.3390/app10217515##
Liu, Z., Yang, X., Ali, H. M., Liu, R., & Yan, J., (2023). Multi-objective optimizations and multi-criteria assessments for a nanofluid-aided geothermal PV hybrid system.
Energy Reports, 9, 96-113.
https://doi.org/10.1016/j.egyr.2022.11.170##
Loyola-Fuentes, J., Pietrasanta, L., Marengo, M., & Coletti, F. (2022). Machine learning algorithms for flow pattern classification in pulsating heat pipes.
Energies, 15(6), 1970.
https://doi.org/10.3390/en15061970##
Lu, J., Duan, C., & Zhao, Y. (2022). Machine learning approach to predict the surface charge density of monodispersed particles in gas–solid fluidized beds.
ACS Omega, 7(11), 9879-9890.
https://doi.org/10.1021/acsomega.2c00299##
Mallick, S. S. (2009). Modeling of fluidized dense phase pneumatic conveying of powders. [Doctoral Thesis, University of Wollongong]. Centre for bulk solid and particulate technologies, Wollongong NSW, Australia##.
Memon, N., Patel, S. B., & Patel, D. P. (2019).
Comparative analysis of artificial neural network and XGBoost algorithm for PolSAR image classification. International Conference on Pattern Recognition and Machine Intelligence, Springer, Cham, Switzerland, 452-460.
https://link.springer.com/chapter/10.1007/978-3-030-34869-4_49##
Nielsen, D. (2016).
Tree boosting with XGBoost-Why does XGBoost win ‘“every”’ machine learning competition? [Master Thesis]. NTNU, Trondheim, Norway.
http://hdl.handle.net/11250/2433761##
Rashmi, K. V., & Gilad-Bachrach, R. (2015).
Dart: dropouts meet multiple additive regression trees. Proceedings of the Artificial Intelligence and Statistics, PMLR, Microtome Publishing, Brookline, MA, 489–497.
https://doi.org/10.48550/arXiv.1505.01866##
Setia, G., Mallick, S. S., Pan, R., & Wypych, P. W. (2016). Modeling solids friction factor for fluidized dense-phase pneumatic transport of powders using two layer flow theory.
Powder Technology, 294, 80–92.
https://doi.org/10.1016/j.powtec.2016.02.006##
Vapnik, V. (1992). Principles of risk minimization for learning theory. Advances in Neural Information Processing Systems, 831–838.##
Zawawi, N. N. M., Azmi, W. H., Redhwan, A. A. M., Ramadhan, A. I., & Ali, H. M. (2022). Optimization of air conditioning performance with Al2O3-SiO2/PAG composite nanolubricants using the response surface method.
Lubricants, 10(10), 243.
https://doi.org/10.3390/lubricants10100243##
Zhang, P., Yang, Y., Huang, Z., Sun, J., Liao, Z., Wang, J., & Yang, Y. (2021). Machine learning assisted measurement of solid mass flow rate in horizontal pneumatic conveying by acoustic emission detection.
Chemical Engineering Science, 229, 116083.
https://doi.org/10.1016/j.ces.2020.116083##
Zhang, X., & Lei, J. (2019).
Study on the optimum design of pneumatic conveying system based on DNN. Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence, 621-625.
https://doi.org/10.1145/3366194.3366305##
Zhu, L. T., Tang, J. X., & Luo, Z. H. (2020). Machine learning to assist filtered two‐fluid model development for dense gas–particle flows.
AIChE Journal, 66(6), 16973.
https://doi.org/10.1002/aic.16973##