Numerical Study of Forced Nonlinear Acoustic Gas Oscillations in a Tube under the Action of Two Pistons with Phase Shift

Document Type : Regular Article

Authors

Institute of Mechanics and Engineering, FRC Kazan Scientific Center, Russian Academy of Sciences, ul. Lobachevskogo 2/31, Kazan, Tatarstan, 420111, Russia

Abstract

Nonlinear acoustic oscillations of large amplitude created in a gas-filled tube under the action of two pistons located at the ends of the pipe are numerically investigated. The pistons oscillate according to the harmonic law at one of the natural frequencies and with different values of phase shift. The movement of the gas is described by mathematical equations of conservation for the main determining relations for the flow, which are estimated by applying the finite volume method based on OpenFOAM package. The non-stationary forced oscillatory motion of a gas inside an axisymmetric tube from a state of rest to a periodic steady motion is investigated. The features of nonlinear acoustic fluctuations of gas in cylindrical duct under the action of two pistons are found. The effect of the phase shift value has a strong effect on the oscillation amplitude of gas, when pistons oscillating at equal natural frequencies, in turn, when the pistons oscillate at different natural frequencies, the effect is very small. In particular, resonant oscillations are detected when the pistons vibrate at the same frequency values equal to odd values of their own higher harmonics in the absence of a phase shift value. In the case when the frequency values are equal to even values of the natural harmonics, resonant oscillations occur when the pistons move in anti-phase. The numerical method appears to work well and would be hoped for practical computations of different resonators. 

Keywords


Aganin, A. A., Ilgamov, M. A., & Smirnova, E. T. (1996). Journal of Sound and Vibration, 195, 359-374. https://doi.org/10.1006/jsvi.1996.0431
Alexeev, A., & Gutginger, C. (2003). Resonance gas oscillations in closed tubes: Numerical study and experiments. Physics of Fluids, 15, 3397-3408. https://doi.org/10.1016/j.ultsonch.2018.05.011
Antao, D. S., & Farouk, B. (2013). High amplitude nonlinear wave driven flow in cylindrical and conical resonators. Journal of the Acoustical Society of America, 134, 917-932. https://doi.org/10.1121/1.4807635
Backhaus, S., & Swift, G. W. (1999). A Thermoacoustic Stirling heat engine. Nature, 339, 335-338. https://doi.org/10.1038/20624
Bearman, P. W., & Obasaju, E. D. (1982). An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders. Journal of Applied Fluid Mechanics, 119, 297–321. https://doi.org/10.1017/S0022112082001360
Carpinlioglu, M. O., & Gundogdu, M. Y. (2001). A critical review on pulsatile pipe flow studies directing towards future research topics. Flow Measurement and Instrumentation, 12, 163-174. https://doi.org/ 10.1016/S0955-5986(01)00020-6
Chester, W. (1963). Resonant oscillations in closed tubes. Journal of Fluid Mechanics, 18, 44-64. https://doi.org/10.1017/s0022112064000040.
Chun, Y. D., & Kim, Y. H. (2000). Numerical analysis for nonlinear resonant oscillations of gas in axisymmetric closed tubes. Journal of the Acoustical Society of America, 108, 2765-2774. https://doi.org/10.1121/1.1312363
Colonius, T., & Lele, K. (2004). Computational aeroacoustics: Progress on nonlinear problems of sound generation. Progress in Aerospace Sciences, 40, 345-416. https://doi.org/10.1016/j.paerosci.2004.09.001
Cruikshank, D. B. (1972). Experimental investigation of finite-amplitude acoustic oscillations in a closed tube. Journal of the Acoustical Society of America, 52, 1024-1036. https://doi.org/10.1121/1.1913171
 Gubaidullin, D. A., & Snigerev, B. A. (2022). Numerical simulation of forced acoustic gas oscillations with large amplitude in closed tube. Wave Motions, 112, 102941. https://doi.org/10.1016/j.wavemoti.2022.102941
Hossain, M. A., Kawahashi, M., & Fujioka T. (2005). Finite amplitude standing wave in closed ducts with cross sectional area change. Wave Motions, 42, 226-237. https://doi.org/10.1016/j.wavemoti.2005.02.003
Ilinskii,Y. A., Lipkens, B., Lucas, T. S., Van Doren, T. W., & Zabolotskaya, E. A. (1998). Nonlinear standing waves in an acoustical resonator. Journal of the Acoustical Society of America, 104, 2664-2674. https://doi.org/10.1121/1.423850
Kinsler, L. E., Frey, A. R., Coppens, A. B., & Sanders, J. V. (1999). Fundamentals of Acoustics. Wiley, New York.
Kraposhin, M. V., Banholzer, M., Pfitzner, M., & Marchevsky, I. K. (2018). A hybrid pressure-based solver for nonideal single-phase fluid flows at all speeds. International Journal of Numerical Methods in Fluids, 88, 79-99. https://doi.org/10.1002/fld.4512
Kraposhin, M. V., Bovtrikova, A., & Strijhak, S. (2015). Adaptation of Kurganov-Tadmor numerical scheme for applying in combination with the piso method in numerical simulation of flows in a wide range of Mach numbers. Procedia Computer Science, 66, 43-52. https://doi.org/10.1016/j.procs.2015.11.007
Lawrenson, C. C., Lipkens, B., Lucas, T. S., Perkins, D. K., & Van Doren, T. W. (1998). Measurements of macrosonic standing waves in oscillating closed cavities. Journal of the Acoustical Society of America 104, 623-636. https://doi.org/10.1121/1.423306
Li, G., Zheng, Y., Yang, H., & Xu, Y. (2016). Numerical investigation of heat transfer and fluid flow around the rectangular flat plane confined by a cylinder under pulsating flow. Journal of Applied Fluid Mechanics, 9, 1569 - 1577. https://doi.org/10.18869/acadpub.jafm.68.235.24140
Marie, S., Ricot, D., & Sagaut, P. (2009). Comparison between lattice boltzmann method and Navier–stokes high order schemes for computational aeroacoustics.  Journal of Computaional Physics, 228, 1056-1070. https://doi.org/10.1016/j.jcp.2008.10.021
Mithun, M. G., Kumar, P. & Tiwari, S. (2018). Numerical investigations on unsteady flow past two identical inline square cylinders oscillating transversely with phase difference. Journal of Applied Fluid Mechanics 11, 847-859. https://doi.org/10.29252/jafm.11.04.28314
Moukalled, F., Mangani, M., & Darwish, L. (2001). The finite volume method. computational fluid dynamics. An Advanced Introduction with OpenFOAM and Matlab. Springer Verlag, Berlin. https://doi.org/10.1007/978-3-319-16874-6
Ning, F., & Li X. (2013). Numerical simulation of finite amplitude standing waves in acoustic resonators using finite volume method. Wave Motions, 50, 135-145. https://doi.org/10.1016/j.wavemoti.2012.08.001
Ohmi, M., & Iguchi, M. (1982). Critical Reynolds number in an oscillating pipe flow. Bulletin of the Japan Society of Mechanical Engineers 25, 8-9. https://doi.org/10.1299/jsme1958.25.165
Penelet, G., Guedra, M., Gusev, V., & Devaux, T. (2012). Simplified account of Rayleigh streaming for the description of nonlinear processes leading to steady state sound in thermoacoustic engines. International Journal of Heat and Mass Transfer, 55, 6042-6053. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.015
Pillai, A. V., & Manu, K. V. (2020). Analytical solutions for unsteady pipe flows with slip boundary condition. Journal of Applied Fluid Mechanics, 13, 1015–1026. https://doi.org/10.29252/jafm.13.03.30800
Piscaglia, F., Montorfano A., & Onorati, A. (2013). Development of a non-reflecting boundary condition for multidimensional nonlinear duct acoustic computation, Journal of Sound and Vibration, 332, 922-935. https://doi.org/10.1016/j.jsv.2012.09.030
Saenger, R., & Hudson, G. (1960). Periodic shock waves in resonating gas column. Journal of the Acoustical Society of America, 32, 961-967. https://doi.org/10.1121/1.1908343
Singh, N. K., & Rubini, P. A. (2015). Large eddy simulation of acoustic pulse propagation and turbulent flow interaction in expansion mufflers. Applied Acoustics 98, 6-19. https://doi.org/10.1016/j.apacoust.2015.04.015
Swift, G. W. (1992). Analysis and performance of a large thermoacoustic engine. Journal of the Acoustical Society of America, 92, 1551-1563. https://doi.org/10.1121/1.403896
Thomas, S. K., & Muruganandam, T. M. (2018). A Review of acoustic compressors and pumps from fluidics perspective. Sensors and Actuators A: Physical, 183, 43-53. https://doi.org/10.1016/j.paerosci.2004.09.001
Vanhille, C., & Campos-Pozuelo, C. (2001). Numerical model for nonlinear standing waves and weak shocks in thermoviscous fluids. Journal of the Acoustical Society of America, 109, 2660-2667. https://doi.org/10.1121/1.423850
Wang, J., Dixia F., & Lin, K. (2020). A review on flow-induced vibration of offshore circular cylinders. Journal of Hydrodynamics, 32, 415-440. https://doi.org/ 10.1007/s42241-020-0032-2
Wang, M., Freund, J. B., & Lele, K. (2006). Computational prediction of flow-generated sound. Annual Review of Fluid Mechanics, 38, 483-512. https://doi.org/10.1146/annurev.fluid.38.050304.092036
Weller, H. G., Tabor, G., Jasak, H., & Fureby C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques, Computers in Physics, 12, 620-631. https://doi.org/10.1063/1.168744
Zaripov, R. G., & Ilhamov, M. A. (1976). Non-linear gas oscillations in a pipe. Journal of Sound and Vibration 46, 245-257. https://doi.org/10.1016/0022-460x(76)90441-7