Aboubacar, M., Matallah, H., Tamaddon-Jahromi, H. R., & Webster, M. F. (2002). Numerical prediction of extensional flows in contraction geometries: hybrid finite volume/element method.
Journal of Non-Newtonian Fluid Mechanics, 104(2-3), 125-164.
https://doi.org/10.1016/S0377-0257(02)00015-0
Alves, M. A., Pinho, F., & Oliveira, P. J. (2005). Visualizations of boger fluid flows in a 4: 1 square–square contraction.
AIChE Journal, 51(11), 2908-2922.
https://doi.org/10.1002/aic.10555
Alzahrani, F., Hobiny, A., Abbas, I., & Marin, M. (2020). An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities.
Symmetry, 12(5), 848.
https://doi.org/10.3390/sym12050848
Ameur, H. (2018). Pressure drop and vortex size of power law fluids flow in branching channels with sudden expansion.
Journal of Applied Fluid Mechanics, 11(6), 1739-1749.
https://doi.org/10.29252/jafm.11.06.28831
Belblidia, F., Keshtiban, I. J., & Webster, M. F. (2003). Novel schemes for steady weakly compressible and incompressible flow s. ACME-UK Conference, University of Strathclyde, Glasgow, UK.
Bharti, Ram Prakash, Ram Pravesh Ram, Amit Kumar Dhiman. (2022). Computational analysis of cross‐ flow of power‐law fluids through a periodic square array of circular cylinders.
Asia‐Pacific Journal Chemical Engineering, 17.2 e2748.
https://doi.org/10.1002/apj.2748
Blanco, M., Battiato, J., & Disotell, K. J. (2019).
Sensitivity study of contraction flow for boundary-layer validation wind tunnel. AIAA Aviation 2019 Forum (p. 3095(.
https://doi.org/10.2514/6.2019-3095
Boyd, J., Buick, J. M., Green, S. (2007). Analysis of the casson and carreau-yasuda non-newtonian blood models in steady and oscillatory flows using the lattice boltzmann method.
Journal of Physics in Fluids, 19(9), 093103.
https://doi.org/10.1063/1.2772250
Carer, C., Driever, L. X., Köbben, S., Mckenzie, M., Rhenman, F., Sype, O. V. D., & Jyoti, B. V.S. (2021). Effect of parameter variation on the viscosity of ethanol gel propellants.
Journal Aerosol Technology Managment. 13.
https://doi.org/10.1590/jatm.v13.1196
Crank, J., & Nicolson, P. (1996). A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type.
Advances in Computational Mathematics, 6(1), 207-226.
https://doi.org/10.1007/BF02127704
Hawken, D. M., Tamaddon‐Jahromi, H. R., Townsend, P., & Webster, M. F. (1990). Galerkin based algorithm for viscous incompressible flow.
International Jornal for Numerical Methods in Fluids, 10 (1990), 327-351.
https://doi.org/10.1002/fld.1650100307
Fadhel, I. A., & Al-Muslimawi, A. H. (2020). Simulation of Newtonian axisymmetric pipe flow by using a Taylor Galerkin/pressure correction finite element method.
Basrah Journal of Science, 38(2), 198-222.
https://doi.org/10.29072/basjs.202024
Ferrás, L. L., Afonso, A. M., Alves, M. A., Nóbrega, J. M., Carneiro, O. S., & Pinho, F. T. (2014). Slip flows of Newtonian and viscoelastic fluids in a 4: 1 contraction.
Journal of Non-Newtonian Fluid Mechanics, 214, 28-37.
https://doi.org/10.1016/j.jnnfm.2014.09.007
Galdi, G. (2011). An introduction to the mathematical theory of the Navier-Stokes equations: Steady-state problems. Springer Science & Business Media.
Graham, D. I., & Jones, T. E. R. (1994). Settling and transport of spherical particles in power-law fluids at finite Reynolds number.
Journal of Non-Newtonian Fluid Mechanics, 54, 465-488.
https://doi.org/10.1016/0377-0257(94)80037-5
Haward, S. J., Li, Z., Lighter, D., Thomas, B., Odell, J. A., & Yuan, X. F. (2010). Flow of dilute to semi-dilute polystyrene solutions through a benchmark 8: 1 planar abrupt micro-contraction.
Journal of Non-Newtonian Fluid Mechanics, 165(23-24), 1654-1669.
https://doi.org/10.1016/j.jnnfm.2010.09.002
Jeong, J., & Hussain, F. (1995). On the identification of a vortex. Journal of Fluid Mechanics, 285, 69-94.
Karimi, S., Dabagh, M., Vasava, P., Dadvar, M., Dabir, B., Jalali, P. (2014). Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry.
Journal of Non-Newtonian Fluid Mechanics, 207, 42-52.
https://doi.org/10.1016/j.jnnfm.2014.03.007
Karlson, M., Nita, B. G., & Vaidya, A. (2020). Numerical computations of vortex formation length in flow past an elliptical cylinder.
Fluids, 5(3), 157.
https://doi.org/10.3390/fluids5030157
Lanzaro, A., & Yuan, X. F. (2011). Effects of contraction ratio on non-linear dynamics of semi-dilute, highly polydisperse PAAm solutions in microfluidics.
Journal of Non-Newtonian Fluid Mechanics, 166(17-18), 1064-1075.
https://doi.org/10.1016/j.jnnfm.2011.06.004
Liepsch, D., Sindeev, S., & Frolov, S. (2018, August).
An impact of non-Newtonian blood viscosity on hemodynamics in a patient-specific model of a cerebral aneurysm. Inernational Journal of Physics: Conference Series, IOP Publishing.
https://doi.org/10.1088/1742-6596/1084/1/012001
López-Aguilar, J. E., Webster, M. F., Al-Muslimawi, A. H. A., Tamaddon-Jahromi, H. R., Williams, R., Hawkins, K., & Lewis, K. (2015). A computational extensional rheology study of two biofluid systems.
Rheologica Acta, 54(4), 287-305.
https://doi.org/10.1007/s00397-014-0830-y
Mahmood, R., Majeed, A. H., Tahir, M., Saddique, I., Hamadneh, N. N., Khan, I., Mehmood, A. (2022). Statistical analysis of hydrodynamic forces in power-law fluid flow in achannel: circular versus semi-circular cylinder.
Journal Frontiers in Physics, 38.
https://doi.org/10.3389/fphy.2022.830408
Patil, H., & Jeyakarthikeyan, P. V. (2018, August). Mesh convergence study and estimation of discretization error of hub in clutch disc with integration of ANSYS. IOP Conference Series: Materials Science and Engineering, IOP. Publishing. https://doi.org/10.1088/1757-899X/402/1/012065
Reddy, J. N. (2019). Introduction to the finite element method. McGraw-Hill Education.
Şahin, B., Ward-Smith, A. J., & Lane, D. (1995). The pressure drop and flow characteristics of wide-angle screened diffusers of large area ratio.
Journal of Wind Engineering and Industrial Aerodynamics, 58(1-2), 33-50.
https://doi.org/10.1016/0167-6105(95)00018-M
Schäfle, C., & Kautz, C. (2019). Students reasoning in fluid dynamics: Bernoulli's principle vs. the continuity equation. Proceedings of the 10th International Conference on Physics Teaching in Engineering Education
Sharhanl, A. A., & Al-Muslimawi, A. (2021). Numerical simulation of a power-law inelastic fluid in axisymmetric contraction by using a Taylor Galerkin-pressure correction finite element method.
International Journal of Nonlinear Analysis and Applications, 12, 2211- 2222.
https://doi.org/10.22075/IJNAA.2021.6113.
Sousa, P. C., Coelho, P. M., Oliveira, M. S. N., & Alves, M. A. (2011). Effect of the contraction ratio upon viscoelastic fluid flow in three-dimensional square–square contractions.
Chemical Engineering Science, 66(5), 998-1009.
https://doi.org/10.1016/j.ces.2010.12.011
Tanner, R. I. (2000). Engineering rheology.OUP Oxford.
Thohura, S., Molla, M. M., & Sarker, M. M. A. (2019). Numerical simulation of non-Newtonian power-law fluid flow in a lid-driven skewed cavity.
International Journal of Applied and Computational Mathematics, 5, 1-29.
https://doi.org/10.1007/s40819-018-0590-y
Walker, J., Halliday, D., & Resnick, R. (2011). Principles of Physics. Hoboken, NJ: Wiley.
Yasir, R. Y., Al-Muslimawi, A. H., Jassim, B. K. (2020). Numerical simulation of non-Newtonian inelastic flows in channel based on artificial compressibility method.
Journal of Applied Computional Mechancs, 6(2), 271-283.
https://doi.org/10.22055/JACM.2019.29948.1650