Computational Analysis of Rheological Secondary Flow in a Pipe-Manifold Containing In-Plane Double Bends

Document Type : Regular Article

Authors

1 Department of Mechanical Engineering, National Institute of Technology, Durgapur, 713209 (W.B.), India

2 Department of Mechanical Engineering, Dr. B. C. Roy Engineering College, Durgapur- 713206 (W.B.), India

Abstract

Non-Newtonian fluid flow in pipe bends is inevitable in industrial applications. Previous researchers have extensively explored Newtonian flow through curved ducts. However, the non-Newtonian counterpart gets little attention. We study the turbulent flow of shear-dependent fluids obeying the Power-Law model in a pipe manifold containing an in-plane double bend. Ostwald–de Waele's power law is used to model the fluid's rheology. We utilize computational fluid dynamics (CFD) to solve Reynolds-averaged Navier–Stokes (RANS) equations with the k-ε turbulence model. We validate our numerical results with previous experimental results. The in-plane double bend perturbs the flow in the pipe manifold to develop a Prandtl's secondary flow of the first kind. A fully developed flow at the bend upstream is disturbed due to the bend's curvature and regains its fully developed characteristics upon a certain downstream length after the exit of the bend. We study the rheological characteristics of the secondary flow within the bend and the evolution of fluid flow at the bend downstream. We demonstrate that the centrifugal force-dominated secondary flow increases with a decrease of the non-Newtonian power-law index. We capture the camel's-back-shaped velocity profiles within the bend due to accelerating-decelerating flow. The study reveals that the average flow velocity increases along the bend with a corresponding pressure head loss. We quantify this velocity rise by a newly introduced non-dimensional number, viz. enhancement ratio. The double bend's enhancement ratio decreases with an increase in n.

Keywords


Aichouni, M., Kolsi, L., Ait-Messaoudenne, N., & Aich, W. (2016). Computational study of the performance of the Etoile flow conditioner. International Journal of Advanced and Applied Sciences, 3, 25-30. http://dx.doi.org/10.21833/ijaas.2016.09.005
Alexander, C. W. L. )1905.( The resistance offered to the flow of water in pipes by bends and elbows. Minutes of the Proceedings of the Institution of Civil Engineers, 159, 341–364. https://doi.org/10.1680/imotp.1905.16457
ANSYS, Inc. (2022). ANSYS Fluent User's Guide. Release R1, Canonsburg, U.S.A.
Barua, S. N. (1963). On secondary flow in stationary curved pipes. The Quarterly Journal of Mechanics and Applied Mathematics, 16(1), 61-77. https://doi.org/10.1093/qjmam/16.1.61
Berger, S. A., Talbot, A. L., & Yao, L. S. (1983). Flow in curved pipes. Annual Review of Fluid Mechanics, 15, 461-512. https://doi.org/10.1146/annurev.fl.15.010183.002333
Bíbok, M., Csizmadia, P., & Till, S. (2020). Experimental and numerical investigation of the loss coefficient of a 90 pipe bend for power-law fluid. Periodica Polytechnica-Chemical Engineering, 64(4), 469-478. https://doi.org/10.3311/PPch.14346
Biswas, G., & Eswaran, V. (2002). Turbulent flows: fundamentals, experiments and modeling. CRC Press.
Bradshaw, P. (1987). Turbulent secondary flows. Annual Review of Fluid Mechanics, 19(1), 53–74. https://doi.org/10.1146/annurev.fl.19.010187.000413
Cabral, R. A. F., Telis, V. R. F., Park, K. J., & Telis-Romero, J. (2011) Friction losses in valves and fittings for liquid food products. Food and Bioproducts Processing, 89(4), 375–382. https://doi.org/10.1016/j.fbp.2010.08.002
Canton, J., Schlatter, P., & Örlü, R. (2016). Modal instability of the flow in a toroidal pipe. Journal of Fluid Mechanics, 792, 894-909. https://doi.org/10.1017/jfm.2016.104
Chant, L. J. (2005). The venerable 1/7th power law turbulent velocity profile: a classical nonlinear boundary value problem solution and its relationship to stochastic processes. Applied Mathematics and Computation, 161(2), 463-474. https://doi.org/10.1016/j.amc.2003.12.109
Chu, Y. M., Jakeer, S., Reddy, S. R. R., Rupa, M. L., Trabelsi, Y., Khan, M. I., & Eldin, S. M. (2023). Double diffusion effect on the bio-convective magnetized flow of tangent hyperbolic liquid by a stretched nano-material with Arrhenius Catalysts. Case Studies in Thermal Engineering, 44, 102838. https://doi.org/10.1016/j.csite.2023.102838
Cieślicki, K., & Piechna, A. (2012). Can the dean number alone characterize flow similarity in differently bent tubes?. Journal of fluids engineering, 134(5). https://doi.org/10.1115/1.4006417
Collins, M., & Schowalter, W. R. (1963). Behavior of non‐Newtonian fluids in the entry region of a pipe. AIChE Journal, 9(6), 804-809. https://doi.org/10.1002/aic.690090619
Csizmadia, P. (2016). Sűrűzagy keverőben lezajló áramlási folyamatok kísérleti és numerikus vizsgálata. [Doctoral dissertation, Budapest University of Technology and Economics (Hungary)].
Csizmadia, P., & Hős, C. (2013). LDV measurements of Newtonian and non-Newtonian open-surface swirling flow in a hydrodynamic mixer. Periodica Polytechnica Mechanical Engineering, 57(2), 29–35. https://doi.org/10.3311/PPme.7045
Dean, W. R. (1927). XVI. Note on the motion of fluid in a curved pipe. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4(20), 208-223. https://doi.org/10.1080/14786440708564324
Debnath, S., Bandyopadhyay, T. K., & Saha, A. K. (2017). CFD analysis of non-newtonian pseudo plastic liquid flow through bends. Periodica Polytechnica Mechanical Engineering, 61(3), 184-203. https://doi.org/10.3311/PPme.9494
Dey, D., & Mahanta, B. (2022). Rheology of power-law nano-fluid flow past a stretching sheet. Advances in Thermofluids and Renewable Energy: Select Proceedings of TFRE 2020. Springer Singapore. https://doi.org/10.1007/978-981-16-3497-0_6
Dutta, P., & Nandi, N. (2015). Effect of reynolds number and curvature ratio on single phase turbulent flow in pipe bends. Mechanics and Mechanical Engineering, 19(1), 5-16.
Dutta, P., Saha, S. K., Nandi, N., & Pal, N. (2016). Numerical study on flow separation in 90° pipe bend under high Reynolds number by k-ε modelling. Engineering Science and Technology, an International Journal, 19(2), 904-910. https://doi.org/10.1016/j.jestch.2015.12.005
Ellahi, R., Sait, S. M., Shehzad, N., & Mobin, N. (2019). Numerical simulation and mathematical modeling of electro-osmotic Couette–Poiseuille flow of MHD power-law nanofluid with entropy generation. Symmetry, 11(8), 1038. https://doi.org/10.3390/sym11081038
Esfe, M. H., & Rostamian, H. (2017). Non-Newtonian power-law behavior of TiO2/SAE 50 nano-lubricant: an experimental report and new correlation. Journal of Molecular Liquids, 232, 219-225. https://doi.org/10.1016/j.molliq.2017.02.014
Fiedler, H. E. (1997). A note on secondary flow in bends and bend combinations. Experiments in Fluids, 23(3), 262-264. https://doi.org/10.1007/s003480050109
Ito, H. (1960). Pressure losses in smooth pipe bends. Journal of Basic Engineering, 82(1), 131–140. https://doi.org/10.1115/1.3662501
Ito, H. (1987). Flow in curved pipes. JSME international Journal, 30(262), 543-552. https://doi.org/10.1299/jsme1987.30.543
Kalpakli Vester, A., Örlü, R., & Alfredsson, P. H. (2016). Turbulent flows in curved pipes: recent advances in experiments and simulations. AppliedMechanics Reviews, 68(5). https://doi.org/10.1115/1.4034135
Khali, S., Nebbali, R., & Bouhadef, K. (2017). Effect of a porous layer on Newtonian and power-law fluids flows between rotating cylinders using lattice Boltzmann method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 3881-3895. https://doi.org/10.1007/s40430-017-0809-6
Khali, S., Bousri, A., Hamadouche, A., Eddine Ameziani, D., Bennacer, R., &Nebbali, R. (2022). Double diffusive convection of power law fluids through taylor–couette flow. Journal of Thermophysics and Heat Transfer, 36(2),328-341. https://doi.org/10.2514/1.T6405
Khali, S., & Nebbali, R. (2023). Numerical study of the effect of a power-law fluid flow structures on levels of mixing in a taylor couette configuration. Journal of Applied Fluid Mechanics, 16(6), 1232-1242. https://doi.org/10.47176/JAFM.16.06.1683
Lai, Y., So, R. M. C., & Zhang, H. S. (1991). Turbulence-Driven secondary flows in a curved pipe, Theoretical and Computational Fluid Dynamics, 3(3), 163–180. https://doi.org/10.1007/BF00271800
Launder, B. E., & Spalding, D. B. (1983). The numerical computation of turbulent flows. Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion. Pergamon. https://doi.org/10.1016/B978-0-08-030937-8.50016-7
Lambride, C., Syrakos, A., & Georgiou, G. C. (2023). Entrance length estimates for flows of power-law fluids in pipes and channels. Journal of Non-Newtonian Fluid Mechanics, 317, 105056. https://doi.org/10.1016/j.jnnfm.2023.105056
Laribi, B., Amrane, A. A., & Youcefi, A. (2013). Numerical analysis of the discharge coefficient with disturbers for flow metring accuracy. 16th International Congress of Metrology. EDP Sciences. https://doi.org/10.1051/metrology/201302001
Laribi, B., Wauters, P., & Aichouni, M. (2003). Comparative study of aerodynamic behavior of three flow conditioners. European Journal of Mechanical and Environmental Engineering, 48(1), 21-30. https://aichouni.tripod.com/Papers/bsme2003_part1.pdf
Laribi, B., Wauters, P., & Youcefi, A. (2010, January). Numerical investigation of contribution of three flow conditioners in the development and establishment of turbulent flows. Fluids Engineering Division Summer Meeting (Vol. 49491, pp. 233-238). https://doi.org/10.1115/FEDSM-ICNMM2010-31291
Li, S., Raghunath, K., Alfaleh, A., Ali, F., Zaib, A., Khan, M. I., & Puneeth, V. (2023a). Effects of activation energy and chemical reaction on unsteady MHD dissipative Darcy–Forchheimer squeezed flow of Casson fluid over horizontal channel. Scientific Reports, 13(1), 2666. https://doi.org/10.1038/s41598-023-29702-w
Li, S., Ali, F., Zaib, A., Loganathan, K., Eldin, S. M., & Ijaz Khan, M. (2023b). Bioconvection effect in the Carreau nanofluid with Cattaneo–Christov heat flux using stagnation point flow in the entropy generation: Micromachines level study. Open Physics, 21(1), 20220228. https://doi.org/10.1515/phys-2022-0228
Marn, J., & Ternik, P. (2003). Use of quadratic model for modelling of fly ash-water mixture. Applied Rheology, 13(6), 286-296. https://doi.org/10.1515/arh-2003-0018
Mendes, P. R. S., & Dutra, E. S. (2004). A viscosity function for viscoplastic liquids. Annual Transactions of the Nordic Rheology Society, 12, 183-188.
Metzner, A. B., & Reed, J. C. (1955). Flow of non‐Newtonian fluids—correlation of the laminar, transition, and turbulent‐flow regions. Aiche Journal, 1(4), 434-440. https://doi.org/10.1002/aic.690010409
Mitsoulis, E. (2007). Annular extrudate swell of pseudoplastic and viscoplastic fluids. Journal of Non-Newtonian Fluid Mechanics, 141(2-3), 138-147. https://doi.org/10.1016/j.jnnfm.2006.10.004
Polizelli, M. A., Menegalli, F. C., Telis, V. R. N., &  Telis-Romero, J. (2003). Friction losses in valves and fittings for power-law fluids. Brazilian Journal of Chemical Engineering, 20(4), 455–463. https://doi.org/10.1590/S0104-66322003000400012
Poole, R. J., & Ridley, B. S. (2007). Development-length requirements for fully developed laminar pipe flow of inelastic non-Newtonian liquids. Journal of Fluids Engineering, 1281-1287. https://doi.org/10.1115/1.2776969
Rohrig, R., Jakirlic, S., & Tropea, C. )2015 .(Comparative computational study of turbulent flow in a 90 deg pipe elbow, International Journal of Heat Fluid Flow, 55 (ETMM10), 102–111. https://doi.org/10.1016/j.ijheatfluidflow.2015.07.011
Rudman, M., Blackburn, H. M., Graham, L. J., & Pullum, L. (2004). Turbulent pipe flow of shear-thinning fluids. Journal of Non-Newtonian Fluid Mechanics, 118(1), 33-48. https://doi.org/10.1016/j.jnnfm.2004.02.006
Shapovalov, V. M. (2017). On the applicability of the Ostwald–de Waele model in solving applied problems. Journal of Engineering Physics and Thermophysics, 90(5), 1213-1218. https://doi.org/10.1007/s10891-017-1676-9
Shwin, S., Hamdani, A., Takahashi, H., & Kikura, H. (2017). Experimental investigation of two-dimensional velocity on the 90 double bend pipe flow using ultrasound technique. World Journal of Mechanics, 7(12), 340-359. https://doi.org/10.4236/wjm.2017.712026
Singh, V., Kumar, S., & Mohapatra, S. K. (2019). Modeling of erosion wear of sand water slurry flow through pipe bend using CFD. Journal of Applied Fluid Mechanics, 12(3), 679-687. https://doi.org/10.29252/jafm.12.03.29199
Straka, M., Eichler, T., Koglin, C., & Rose, J. (2019). Similarity of the asymmetric swirl generator and a double bend in the near-field range. Flow Measurement and Instrumentation, 70, 101647. https://doi.org/10.1016/j.flowmeasinst.2019.101647
Xiong, W., Kalkühler, K., & Merzkirch, W. (2003). Velocity and turbulence measurements downstream of flow conditioners. Flow Measurement and Instrumentation, 14(6), 249-260. https://doi.org/10.1016/S0955-5986(03)00031-1
Yigit, S., Graham, T., Poole, R. J., & Chakraborty, N. (2016). Numerical investigation of steady-state laminar natural convection of power-law fluids in square cross-sectioned cylindrical annular cavity with differentially-heated vertical walls. International Journal of Numerical Methods for Heat & Fluid Flow, 26 (1), 85-107. https://doi.org/10.1108/HFF-01-2015-0030
Yoon, K., Jung, H. W., & Chun, M. S. (2017). Secondary flow behavior of electrolytic viscous fluids with Bird-Carreau model in curved microchannels. Rheologica Acta, 56(11915-926. https://doi.org/10.1007/s00397-017-1033-0
Żelasko, J., & Niezgoda-Żelasko, B. (2010). Generalized non-Newtonian flow of ice slurry through bends. Transactions of the Institute of Fluid-Flow Machinery 45-60.