Amiri-Jaghargh, A., Roohi, E., Niazmand, H., & Stefanov, S. (2013). DSMC simulation of low knudsen micro/nanoflows using small number of particles per cells.
Journal of Heat Transfer,
135(10).
https://doi.org/10.1115/1.4024505
Baliti, J., Hssikou, M., & Alaoui, M. (2019). Gas flow and heat transfer in an enclosure induced by a sinusoidal temperature.
Journal of Applied Fluid Mechanics,
12(6), 1757-1767.
https://doi.org/10.29252/jafm.12.06.29304
Bird, G. A. (1994). Molecular gas dynamics and the direct simulation of gas flows. Molecular Gas Dynamics and the Direct Simulation of Gas Flows.
Darbandi, M., & Roohi, E. (2013). A hybrid DSMC/Navier–Stokes frame to solve mixed rarefied/nonrarefied hypersonic flows over nano‐plate and micro‐cylinder.
International Journal for Numerical Methods in Fluids,
72(9), 937-966.
https://doi.org/10.1002/fld.3769
Darbandi, M., & Schneider, G. (1997). Momentum variable procedure for solving compressible and incompressible flows.
AIAA Journal,
35(12), 1801-1805.
https://doi.org/10.2514/2.45
Darbandi, M., & Vakilipour, S. (2009). Solution of thermally developing zone in short micro-/nanoscale channels.
Journal of heat Transfer,
131(4).
https://doi.org/10.1115/1.3072908
Dimarco, G., & Pareschi, L. (2011). Exponential runge–kutta methods for stiff kinetic equations.
SIAM Journal on Numerical Analysis,
49(5), 2057-2077.
https://doi.org/10.1137/100811052
Eskandari, M., & Nourazar, S. (2017). On the time relaxed Monte Carlo computations for the lid-driven micro cavity flow.
Journal of Computational Physics,
343, 355-367.
https://doi.org/10.1016/j.jcp.2017.03.017
Eskandari, M., & Nourazar, S. (2018a). On the Expedient solution of the boltzmann equation by modified time relaxed monte carlo (MTRMC) method.
Journal of Applied Fluid Mechanics,
11(3), 655-666.
https://doi.org/10.29252/jafm.11.03.28007
Ganjaei, A., & Nourazar, S. (2009). Numerical simulation of a binary gas flow inside a rotating cylinder.
Journal of mechanical Science and Technology,
23, 2848-2860.
https://doi.org/10.1007/s12206-008-1210-2
Jahangiri, P., Nejat, A., Samadi, J., & Aboutalebi, A. (2012). A high-order Monte Carlo algorithm for the direct simulation of Boltzmann equation.
Journal of Computational Physics,
231(14), 4578-4596.
https://doi.org/10.1016/j.jcp.2012.02.029
Kalinov, A., Osinsky, A., Matveev, S. A., Otieno, W., & Brilliantov, N. V. (2022). Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics.
Journal of Computational Physics,
467, 111439.
https://doi.org/10.1016/j.jcp.2022.111439
Koç, M., Kandemir, İ., & Akkaya, V. R. (2021). An investigation of transition flow in porous media by event driven molecular dynamics simulation.
Journal of Applied Fluid Mechanics.
https://doi.org/10.47176/jafm.14.01.31475
LeBeau, G., Jacikas, K., & Lumpkin, F. (2003).
Virtual sub-cells for the direct simulation Monte Carlo method. 41st Aerospace Sciences Meeting and Exhibit,
https://doi.org/10.2514/6.2003-1031
Mukherjee, S., Shahabi, V., Gowtham, R., Rajan, K., & Velamati, R. (2019). Effect of knudsen number, lid velocity and velocity ratio on flow features of single and double lid driven cavities.
Journal of Applied Fluid Mechanics,
12(5), 1575-1583.
https://doi.org/10.29252/jafm.12.05.29335
Pan, L., Liu, G., Khoo, B., & Song, B. (2000). A modified direct simulation Monte Carlo method for low-speed microflows.
Journal of Micromechanics and Microengineering,
10(1), 21.
https://doi.org/10.1088/0960-1317/10/1/304
Pareschi, L., & Caflisch, R. E. (1999). An implicit Monte Carlo method for rarefied gas dynamics: I. The space homogeneous case.
Journal of Computational Physics,
154(1), 90-116.
https://doi.org/10.1006/jcph.1999.6301
Pareschi, L., & Russo, G. (2000). Asymptotic preserving Monte Carlo methods for the Boltzmann equation.
Transport Theory and Statistical Physics,
29(3-5), 415-430.
https://doi.org/10.1080/00411450008205882
Pareschi, L., & Russo, G. (2001a). An introduction to Monte Carlo method for the Boltzmann equation. ESAIM: Proceedings.
Pareschi, L., & Trazzi, S. (2005). Numerical solution of the Boltzmann equation by time relaxed Monte Carlo (TRMC) methods.
International Journal for Numerical Methods in Fluids,
48(9), 947-983.
https://doi.org/10.1002/fld.969
Plimpton, S., Moore, S., Borner, A., Stagg, A., Koehler, T., Torczynski, J., & Gallis, M. (2019). Direct simulation Monte Carlo on petaflop supercomputers and beyond.
Physics of Fluids,
31(8), 086101.
https://doi.org/10.1063/1.5108534
Russo, G., Pareschi, L., Trazzi, S., Shevyrin, A., Bondar, Y. A., & Ivanov, M. (2005).
Plane Couette flow computations by TRMC and MFS methods. AIP Conference Proceedings,
https://doi.org/10.1063/1.1941598
Taheri, E., Roohi, E., & Stefanov, S. (2022). A symmetrized and simplified Bernoulli trial collision scheme in direct simulation Monte Carlo.
Physics of Fluids,
34(1), 012010.
https://doi.org/10.1063/5.0076025
Trazzi, S., Pareschi, L., & Wennberg, B. (2009). Adaptive and recursive time relaxed monte carlo methods for rarefied gas dynamics.
SIAM Journal on Scientific Computing,
31(2), 1379-1398.
https://doi.org/10.1137/07069119X
Vakilipour, S., & Darbandi, M. (2009). Advancement in numerical study of gas flow and heat transfer in a microscale.
Journal of Thermophysics and Heat Transfer,
23(1), 205-208.
https://doi.org/10.2514/1.37037
Watvisave, D. S., Puranik, B. P., & Bhandarkar, U. V. (2015). A hybrid MD-DSMC coupling method to investigate flow characteristics of micro-devices.
Journal of Computational Physics,
302, 603-617.
https://doi.org/10.1016/j.jcp.2015.09.012