On an Efficient Solution of the Boltzmann Equation Using the Modified Time Relaxed Monte Carlo (MTRMC) Scheme

Document Type : Regular Article

Authors

Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

The study proposes a new method called MTRMC to simulate flow in rarefied regimes, which are important in various industrial and engineering applications. This new method utilizes a modified collision function with smaller number of inter-molecular collisions, making it more computationally efficient than the widely used direct simulation Monte Carlo (DSMC) method. The MTRMC method is used to analyze the flow over a flat nano-plate at various free stream velocities, ranging from low to supersonic speeds. The results are compared with those from DSMC and time relaxed Monte Carlo (TRMC) schemes, and the findings show that the MTRMC method is in good agreement with the standard schemes, with a significant reduction in computational expense, up to 51% in some cases.

Keywords

Main Subjects


Amiri-Jaghargh, A., Roohi, E., Niazmand, H., & Stefanov, S. (2013). DSMC simulation of low knudsen micro/nanoflows using small number of particles per cells. Journal of Heat Transfer, 135(10). https://doi.org/10.1115/1.4024505
Baliti, J., Hssikou, M., & Alaoui, M. (2019). Gas flow and heat transfer in an enclosure induced by a sinusoidal temperature. Journal of Applied Fluid Mechanics, 12(6), 1757-1767. https://doi.org/10.29252/jafm.12.06.29304
Bird, G. A. (1994). Molecular gas dynamics and the direct simulation of gas flows. Molecular Gas Dynamics and the Direct Simulation of Gas Flows.
Carlen, E., Carvalho, M., & Gabetta, E. (2000). Central limit theorem for Maxwellian molecules and truncation of the Wild expansion. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 53(3), 370-397. https://doi.org/10.1002/(SICI)1097-0312(200003)53:3%3C370::AID-CPA4%3E3.0.CO;2-0
Cercignani, C., & Cercignani, C. (1988). The boltzmann equation. Springer. https://doi.org/10.1007/978-1-4612-1039-9_2
Darbandi, M., & Roohi, E. (2013). A hybrid DSMC/Navier–Stokes frame to solve mixed rarefied/nonrarefied hypersonic flows over nano‐plate and micro‐cylinder. International Journal for Numerical Methods in Fluids, 72(9), 937-966. https://doi.org/10.1002/fld.3769
Darbandi, M., & Schneider, G. (1997). Momentum variable procedure for solving compressible and incompressible flows. AIAA Journal, 35(12), 1801-1805. https://doi.org/10.2514/2.45
Darbandi, M., & Vakilipour, S. (2009). Solution of thermally developing zone in short micro-/nanoscale channels. Journal of heat Transfer, 131(4). https://doi.org/10.1115/1.3072908
Dimarco, G., & Pareschi, L. (2011). Exponential runge–kutta methods for stiff kinetic equations. SIAM Journal on Numerical Analysis, 49(5), 2057-2077. https://doi.org/10.1137/100811052
Eskandari, M., & Nourazar, S. (2017). On the time relaxed Monte Carlo computations for the lid-driven micro cavity flow. Journal of Computational Physics, 343, 355-367. https://doi.org/10.1016/j.jcp.2017.03.017
Eskandari, M., & Nourazar, S. (2018a). On the Expedient solution of the boltzmann equation by modified time relaxed monte carlo (MTRMC) method. Journal of Applied Fluid Mechanics, 11(3), 655-666. https://doi.org/10.29252/jafm.11.03.28007
Eskandari, M., & Nourazar, S. (2018b). On the time relaxed Monte Carlo computations for the flow over a flat nano-plate. Computers & Fluids, 160, 219-229. https://doi.org/10.1016/j.compfluid.2017.10.021
Filbet, F., & Russo, G. (2003). High order numerical methods for the space non-homogeneous Boltzmann equation. Journal of Computational Physics, 186(2), 457-480. https://doi.org/10.1016/S0021-9991(03)00065-2
Gabetta, E., Pareschi, L., & Toscani, G. (1997). Relaxation schemes for nonlinear kinetic equations. SIAM Journal on Numerical Analysis, 34(6), 2168-2194. https://doi.org/10.1137/S0036142995287768
Ganjaei, A., & Nourazar, S. (2009). Numerical simulation of a binary gas flow inside a rotating cylinder. Journal of mechanical Science and Technology, 23, 2848-2860. https://doi.org/10.1007/s12206-008-1210-2
Jahangiri, P., Nejat, A., Samadi, J., & Aboutalebi, A. (2012). A high-order Monte Carlo algorithm for the direct simulation of Boltzmann equation. Journal of Computational Physics, 231(14), 4578-4596. https://doi.org/10.1016/j.jcp.2012.02.029
Kalinov, A., Osinsky, A., Matveev, S. A., Otieno, W., & Brilliantov, N. V. (2022). Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics. Journal of Computational Physics, 467, 111439. https://doi.org/10.1016/j.jcp.2022.111439
Koç, M., Kandemir, İ., & Akkaya, V. R. (2021). An investigation of transition flow in porous media by event driven molecular dynamics simulation. Journal of Applied Fluid Mechanics. https://doi.org/10.47176/jafm.14.01.31475
LeBeau, G., Jacikas, K., & Lumpkin, F. (2003). Virtual sub-cells for the direct simulation Monte Carlo method. 41st Aerospace Sciences Meeting and Exhibit, https://doi.org/10.2514/6.2003-1031
Mukherjee, S., Shahabi, V., Gowtham, R., Rajan, K., & Velamati, R. (2019). Effect of knudsen number, lid velocity and velocity ratio on flow features of single and double lid driven cavities. Journal of Applied Fluid Mechanics, 12(5), 1575-1583. https://doi.org/10.29252/jafm.12.05.29335
Oran, E. S., Oh, C., & Cybyk, B. (1998). Direct simulation Monte Carlo: recent advances and applications. Annual Review of Fluid Mechanics, 30(1), 403-441. https://doi.org/10.1146/annurev.fluid.30.1.403
Pan, L., Liu, G., Khoo, B., & Song, B. (2000). A modified direct simulation Monte Carlo method for low-speed microflows. Journal of Micromechanics and Microengineering, 10(1), 21. https://doi.org/10.1088/0960-1317/10/1/304
Pareschi, L., & Caflisch, R. E. (1999). An implicit Monte Carlo method for rarefied gas dynamics: I. The space homogeneous case. Journal of Computational Physics, 154(1), 90-116. https://doi.org/10.1006/jcph.1999.6301
Pareschi, L., & Russo, G. (2000). Asymptotic preserving Monte Carlo methods for the Boltzmann equation. Transport Theory and Statistical Physics, 29(3-5), 415-430. https://doi.org/10.1080/00411450008205882
Pareschi, L., & Russo, G. (2001a). An introduction to Monte Carlo method for the Boltzmann equation. ESAIM: Proceedings.
Pareschi, L., & Russo, G. (2001b). Time relaxed Monte Carlo methods for the Boltzmann equation. SIAM Journal on Scientific Computing, 23(4), 1253-1273. https://doi.org/10.1137/S1064827500375916
Pareschi, L., & Trazzi, S. (2005). Numerical solution of the Boltzmann equation by time relaxed Monte Carlo (TRMC) methods. International Journal for Numerical Methods in Fluids, 48(9), 947-983. https://doi.org/10.1002/fld.969
Pareschi, L., & Wennberg, B. (2001). A recursive Monte Carlo method for the Boltzmann equation in the Maxwellian case. https://doi.org/10.1515/mcma.2001.7.3-4.349
Plimpton, S., Moore, S., Borner, A., Stagg, A., Koehler, T., Torczynski, J., & Gallis, M. (2019). Direct simulation Monte Carlo on petaflop supercomputers and beyond. Physics of Fluids, 31(8), 086101. https://doi.org/10.1063/1.5108534
Russo, G., Pareschi, L., Trazzi, S., Shevyrin, A., Bondar, Y. A., & Ivanov, M. (2005). Plane Couette flow computations by TRMC and MFS methods. AIP Conference Proceedings, https://doi.org/10.1063/1.1941598
Shen, C., Fan, J., & Xie, C. (2003). Statistical simulation of rarefied gas flows in micro-channels. Journal of Computational Physics, 189(2), 512-526. https://doi.org/10.1016/S0021-9991(03)00231-6
Taheri, E., Roohi, E., & Stefanov, S. (2022). A symmetrized and simplified Bernoulli trial collision scheme in direct simulation Monte Carlo. Physics of Fluids, 34(1), 012010. https://doi.org/10.1063/5.0076025
Trazzi, S., Pareschi, L., & Wennberg, B. (2009). Adaptive and recursive time relaxed monte carlo methods for rarefied gas dynamics. SIAM Journal on Scientific Computing, 31(2), 1379-1398. https://doi.org/10.1137/07069119X
Vakilipour, S., & Darbandi, M. (2009). Advancement in numerical study of gas flow and heat transfer in a microscale. Journal of Thermophysics and Heat Transfer, 23(1), 205-208. https://doi.org/10.2514/1.37037
Watvisave, D. S., Puranik, B. P., & Bhandarkar, U. V. (2015). A hybrid MD-DSMC coupling method to investigate flow characteristics of micro-devices. Journal of Computational Physics, 302, 603-617. https://doi.org/10.1016/j.jcp.2015.09.012
Wild, E. (1951). On Boltzmann's equation in the kinetic theory of gases. Mathematical Proceedings of the cambridge Philosophical society. https://doi.org/10.1017/S0305004100026992