Akhlaghi, M., Asadbeigi, M., & Ghafoorian, F. (2023). Novel CFD and DMST dual method parametric study and optimization of a darrieus vertical axis wind turbine.
Journal of Applied Fluid Mechanics,
17(1), 205–218.
https://doi.org/10.47176/jafm.17.1.1985
Aly, A. M., & Bitsuamlak, G. (2013). Aerodynamics of ground-mounted solar panels: Test model scale effects.
Journal of Wind Engineering and Industrial Aerodynamics,
123, 250–260.
https://doi.org/10.1016/j.jweia.2013.07.007
Aly, A. M., & Clarke, J. (2023). Wind design of solar panels for resilient and green communities: CFD with machine learning.
Sustainable Cities and Society,
94, 104529.
https://doi.org/10.1016/j.scs.2023.104529
Aly, A. M., & Dragomirescu, E. (2018).
Wind engineering for natural hazards: modeling, simulation, and mitigation of windstorm impact on critical infrastructure. American Society of Civil Engineers.
https://doi.org/10.1061/9780784415153
Aly, A. M., & Gol-Zaroudi, H. (2020). Peak pressures on low rise buildings: CFD with LES versus full scale and wind tunnel measurements.
Wind and Structures, An International Journal,
30(1), 99–117.
https://doi.org/10.12989/was.2020.30.1.099
Banari, A., Hertel, D., Schlink, U., Hampel, U., & Lecrivain, G. (2023). Simulation of particle resuspension by wind in an urban system.
Environmental Fluid Mechanics,
23(1), 41–63.
https://doi.org/10.1007/s10652-022-09905-x
Dickison, M., Ghaleeh, M., Milady, S., Wen, L. T., & Al Qubeissi, M. (2020). Investigation into the aerodynamic performance of a concept sports car.
Journal of Applied Fluid Mechanics,
13(2), 583–601.
https://doi.org/10.29252/jafm.13.02.30179
ElDegwy, A., Elsayed, A., & Darwish, M. (2022). Aerodynamics of ancient egyptian obelisks and their structural response to boundary layer wind.
Environmental Fluid Mechanics,
22(5), 1035–1053.
https://doi.org/10.1007/s10652-022-09877-y
Ferreira, A. D., Thiis, T., Freire, N. A., & Ferreira, A. M. C. (2019). A wind tunnel and numerical study on the surface friction distribution on a flat roof with solar panels.
Environmental Fluid Mechanics,
19, 601–617.
http://dx.doi.org/10.1007%2Fs10652-018-9641-5
Fukami, K., Fukagata, K., & Taira, K. (2019). Super-resolution reconstruction of turbulent flows with machine learning.
Journal of Fluid Mechanics,
870, 106–120.
https://doi.org/10.1017/jfm.2019.238
Gargallo-Peiró, A., Avila, M., Owen, H., Prieto-Godino, L., & Folch, A. (2018). Mesh generation, sizing and convergence for onshore and offshore wind farm Atmospheric Boundary Layer flow simulation with actuator discs.
Journal of Computational Physics.
https://doi.org/10.1016/j.jcp.2018.08.031
Geneva, N., & Zabaras, N. (2019). Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks.
Journal of Computational Physics,
383, 125–147.
https://doi.org/10.1016/j.jcp.2019.01.021
Guichard, R. (2019). Assessment of an improved Random Flow Generation method to predict unsteady wind pressures on an isolated building using Large-Eddy Simulation.
Journal of Wind Engineering and Industrial Aerodynamics,
189, 304–313.
https://doi.org/10.1016/j.jweia.2019.04.006
Jones, W. P., & Launder, B. E. (1973). The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence.
International Journal of Heat and Mass Transfer,
16(6), 119–1130.
https://doi.org/10.1016/0017-9310(73)90125-7
Khaled, M., Aly, A., & Elshaer, A. (2021). Computational efficiency of CFD modeling for building engineering: An empty domain study. Journal of Building Engineering. https://doi.org/10.1016/j.jobe.2021.102792
Khaled, M. F., & Aly, A. M. (2022). Assessing aerodynamic loads on low-rise buildings considering Reynolds number and turbulence effects: a review.
Advances in Aerodynamics,
4(1), 1–33.
https://doi.org/10.1186/s42774-022-00114-0
Khaled, M. F., & Aly, A. M. (2023). Augmenting external surface pressures’ predictions on isolated low-rise buildings using CFD simulations.
Wind and Structures, An International Journal,
37(4), 255–274.
https://doi.org/10.12989/was.2023.37.4.255
Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner, M. P., & Hoyer, S. (2021). Machine learning–accelerated computational fluid dynamics.
Proceedings of the National Academy of Sciences of the United States of America.
https://doi.org/10.1073/pnas.2101784118
Li, T., Zhang, J., Rashidi, M. M., & Yu, M. (2019). On the reynolds-averaged navier-stokes modelling of the flow around a simplified train in crosswinds.
Journal of Applied Fluid Mechanics,
12(2), 551–563.
https://doi.org/10.29252/jafm.12.02.28958
Liu, W., Fang, J., Rolfo, S., Moulinec, C., & Emerson, D. R. (2021). An iterative machine-learning framework for RANS turbulence modeling.
International Journal of Heat and Fluid Flow,
90, 108822.
https://doi.org/10.1016/j.ijheatfluidflow.2021.108822
Liu, W., Fang, J., Rolfo, S., Moulinec, C., & Emerson, D. R. (2023). On the improvement of the extrapolation capability of an iterative machine-learning based RANS Framework.
Computers & Fluids, 105864.
https://doi.org/10.1016/j.compfluid.2023.105864
Ma, K., & Lai, H. (2016). Comparison of five two-equation turbulence models for calculation of flow in 90 curved rectangular ducts.
Journal of Applied Fluid Mechanics,
9(6), 2917–2931.
https://doi.org/10.29252/jafm.09.06.25568
Mahboub, A., Bouzit, M., & Ghenaim, A. (2022). Effects of different shaped cavities and bumps on flow structure and wing performance.
Journal of Applied Fluid Mechanics,
15(6), 1649–1660.
https://doi.org/10.47176/jafm.15.06.1108
Majchrzak, M., Marciniak-Lukasiak, K., & Lukasiak, P. (2023). A Survey on the application of machine learning in turbulent flow simulations.
Energies,
16(4), 1755.
https://doi.org/10.3390/en16041755
Maulik, R., Sharma, H., Patel, S., Lusch, B., & Jennings, E. (2021).
Deploying deep learning in OpenFOAM with TensorFlow. AIAA Scitech 2021 Forum (p. 1485).
https://doi.org/10.2514/6.2021-1485
Menter, F. R. (1992). Improved two-equation turbulence models for aerodynamic flows. NASA Technical Manual 103975.
Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.
Pathak, J., Mustafa, M., Kashinath, K., Motheau, E., Kurth, T., & Day, M. (2020). Using machine learning to augment coarse-grid computational fluid dynamics simulations. 1–8.
https://doi.org/arXiv:2010.00072
Richards, P. J., & Hoxey, R. P. (2012). Pressures on a cubic building-Part 2: Quasi-steady and other processes.
Journal of Wind Engineering and Industrial Aerodynamics,
102, 87–96.
https://doi.org/10.1016/j.jweia.2011.11.003
Samuel, A. L. (1959). Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development,
3(3), 210–229.
https://doi.org/10.1147/rd.33.0210
Singh, A. P., Medida, S., & Duraisamy, K. (2017). Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils.
AIAA Journal.
https://doi.org/10.2514/1.J055595
Slotnick, J., Khodadoust, A., Alonso, J., & Darmofal, D. (2014). CFD vision 2030 study: A path to revolutionary computational aerosciences. NNASA/CR-2014-218178.
Smolarkiewicz, P. K., Sharman, R., Weil, J., Perry, S. G., Heist, D., & Bowker, G. (2007). Building resolving large-eddy simulations and comparison with wind tunnel experiments.
Journal of Computational Physics.
https://doi.org/10.1016/j.jcp.2007.08.005
Thuerey, N., Weissenow, K., Prantl, L., & Hu, X. (2020). Deep learning methods for reynolds-averaged navier-stokes simulations of airfoil flows.
AIAA Journal,
58(1), 25–36.
https://doi.org/10.48550/arXiv.1810.08217
Wadi Al-Fatlawi, A., Hashemi, J., Hossain, S., & El Haj Assad, M. (2024). Applying machine learning in CFD to study the impact of thermal characteristics on the aerodynamic characteristics of an airfoil.
Journal of Applied Fluid Mechanics,
17(4), 742–755.
https://doi.org/10.47176/jafm.17.4.2276
Xingjun, H., Yufei, L., Keyuan, S., Peng, G., & Jingyu, W. (2023). Suppressing methods of the pressure fluctuation in open jet wind tunnels.
Journal of Applied Fluid Mechanics,
16(10), 1901–1915.
https://doi.org/10.47176/jafm.16.10.1889
Zan, B. W., Han, Z. H., Xu, C. Z., Liu, M. Q., & Wang, W. Z. (2022). High-dimensional aerodynamic data modeling using a machine learning method based on a convolutional neural network.
Advances in Aerodynamics.
https://doi.org/10.1186/s42774-022-00128-8
Zhang, J., Gao, G., Liu, T., & Li, Z. (2017). Shape optimization of a kind of earth embankment type windbreak wall along the Lanzhou-Xinjiang railway.
Journal of Applied Fluid Mechanics,
10(4), 1189–1200.
https://doi.org/10.18869/acadpub.jafm.73.241.27353
Zhang, Z. Q., Liu, H. L., Liu, Z., Zhang, Z., Cheng, G. G., Wang, X. D., & Ding, J. N. (2019). Anisotropic interfacial properties between monolayered black phosphorus and water.
Applied Surface Science.
https://doi.org/10.1016/j.apsusc.2019.01.037
Zhao, Y., Akolekar, H. D., Weatheritt, J., Michelassi, V., & Sandberg, R. D. (2020). RANS turbulence model development using CFD-driven machine learning.
Journal of Computational Physics.
https://doi.org/10.1016/j.jcp.2020.109413