Barber, J. P., Taylor, H. R., & Wilbeck, J. S. (1978). Bird impacts forces and pressures on rigid and compliant targets. Air Force Flight Dynamics Laboratory, Air Force Systems Command.
Bohari, B., & Sayma, A. (2010). CFD analysis of effects of damage due to bird strike on fan performance.
Turbo Expo: Power for Land, Sea, and Air, 44021, 173-181.
https://doi.org/10.1115/gt2010-22365.
Boos, P., Möckel, H., Henne, J. M., & Seimeler, R. (1998).
Flow measurement in a multistage large scale low speed axial flow research compressor. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 78620: V001T01A104.
https://doi.org/10.1115/98-gt-432.
Charles, A. W., Harold, F. W., & Richard, G. S. (1995).
NASA low-speed axial compressor for fundamental research. National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program.
https://doi.org/10.2514/6.1983-1351.
Chen, Q., Li, H., Liang, Z., Song, H., Ma, Z., & Sun, H. (2023).
Dynamic stress test of aero-engine compressor rotor blade. Journal of Physics: Conference Series. IOP Publishing, 012033.
https://doi.org/10.1088/1742-6596/2658/1/012033.
Cong, Y., Zhou, S., Wang, M., Chu, S., & Wang, Z. (2023). Effects of blade leading edge lobe top damage on pressurized air compressor performance,
Electromechanical Equipment, 40(05), 1-9+58.
https://doi.org/10.16443/j.cnki.31-1420.2023.05.001.
Imregun, M., & Vahdati, M. (1999). Aeroelasticity analysis of a bird-damaged fan assembly using a large numerical model,”
The Aeronautical Journal 103(1030), 569-578.
https://doi.org/10.1017/s0001924000064204.
Jiang, W., Ju, Y., & Zhang, C. (2017). Influence of defective blades on the aerodynamic performance of transonic compressor rotor. Journal of Engineering Thermophysics, 38(11), 2357-2362.
Li, P., Zuo, H., Xiao, W., Guo, Z., & Yuan, Z. (2024). Research and prospect of aero-engine blade damage and its repair technology,
Journal of Aeronautics, 1-27.
https://doi.org/10.7527/S1000-6893.2023.29635.
Li, Y., & Sayma, A. (2012).
Effects of blade damage on the performance of a transonic axial compressor rotor. Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 44748, 2427-2437.
https://doi.org/10.1115/gt2012-68324.
Li, Y., & Sayma, A. (2015). Computational fluid dynamics simulations of blade damage effect on the performance of a transonic axial compressor near stall.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(12), 2242-2260.
https://doi.org/10.1177/0954406214553828.
Lu, J. (2017). Experimental and numerical simulation study on aerodynamic performance of fan damaged by bird impact, Shanghai, Shanghai Jiaotong University.
Muir, E. R., & Friedmann, P. P. (2013).
Unsteady aerodynamic analysis of a bird-damaged turbofan. 54th IAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1773.
https://doi.org/10.2514/6.2013-1773.
Muir, E. R., & Friedmann, P. P. (2014).
Aeroelastic response of bird-damaged fan blades using a coupled CFD/CSD framework. 55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference, 0334.
https://doi.org/10.2514/6.2014-0334.
Muir, E. R., & Friedmann, P. P. (2016). Forced and aeroelastic responses of bird-damaged fan blades: A comparison and its implications.
Journal of Aircraft 53(2),
561-577.
https://doi.org/10.2514/1.c033424.
Qin, L., Zhang, H., Zhou, L., He, W., & Wu, Y., (2022). Effects of blade tip dropout on aerodynamic performance of transonic compressor.
Propulsion Technology, 43(10), 87-97,
https://doi.org/10.13675/j.cnki.tjjs.210346.
Reid, L., & Moore, R. D. (1978). Design and overall performance of four highly loaded, high-speed inlet stages for an advanced high-pressure-ratio core compressor. NASA-TP-1337.
Reid, L., & Urasek, D. C. (1973). Experimental evaluation of the effects of a blunt leading edge on the performance of a transonic rotor
, 199-204.
https://doi.org/10.1115/1.3445723.
Suder, K. L. (1996). Experimental investigation of the flow field in a transonic, axial flow compressor with respect to the development of blockage and loss, Case Western Reserve University.
Sun, L., Zhang, Z., Zhang, K., Zheng, B., Shi, T., Zhang, G., & Gao, D. (2024). Study on the effect of external impact damage on aero-engine fan blades,
Mechanics Quarterly, 45(01), 99-109.
https://doi.org/10.15959/j.cnki.0254-0053.2024.01.008.
Tang, J., Zhong, Z., Lu, X., & Wang, L. (2023). Study of the effect of a blade tip notch damage on the aerodynamic performance of transonic compressor rotors,
Fluid Dynamics, 58(8),
1623-1639.
https://doi.org/10.1134/s0015462823600803.
Venkatesh, S., Suzuki, K., Vahdati, M., Salles, L., & Rendu, Q. (2020).
Effect of geometric uncertainty on a one stage transonic compressor of an industrial gas turbine. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 84065: V02AT32A078.
https://doi.org/10.1115/1.0002996v.
Yang, J. (2014). Research on fan blade bird impact response and aerodynamic performance analysis method of damaged fan. Nanjing, Nanjing University of Aeronautics and Astronautics.
Yang, X., Li, A., Cao, B., Shen, H., & Liu, S. (2021). Numerical simulation study on the bird strike performance of fan/booster stage of aero-engine with large-containment-channel-ratio.
Gas Turbine Technology, 34(03)
, 21-27.
https://doi.org/10.16120/j.cnki.issn1009-2889.2021.03.003.
Zhang, C., Hu, J., Wang, Z., Yin, C., & Yan, W. (2015). Numerical study of three-dimensional optimization of rotor blades for low-speed axial-flow compressor.
Journal of Aerodynamics, 30(02), 483-490.
https://doi.org/10.13224/j.cnki.jasp.2015.02.028.
Zhao, Z., Wang, L., Lu, K., Li, Y., Chen, W., & Liu, L. (2020). Effect of foreign object damage on high-cycle fatigue strength of titanium alloy for aero-engine blade,
Engineering Failure Analysis, 118, 104842.
https://doi.org/104842.10.1016/j.engfailanal.2020.104842.