Almohammadi, K. M. (2020). Assessment of reattachment length using turbulence models on backward facing step (BFS) for turbulent flow with modified general richardson method.
Arabian Journal for Science and Engineering,
45(11), 9293–9303.
https://doi.org/10.1007/s13369-020-04695-0
Altché, F., & Fortelle, A. D. L. (2017). An LSTM network for highway trajectory prediction. In
Proceedings ofthe IEEE 20th International Conference on Intelligent Transportation Systems. Piscataway, NJ: IEEE.
https://doi.org/10.48550/arXiv.1801.07962
Brown, B., Yu, X., & Garverick, S. (2004). Mixed-mode analog VLSI continuous-time recurrent neural network. In
Circuits, Signals, and Systems: IASTED International Conference Proceedings.
https://dblp.org/rec/conf/iastedCCS/BrownYG04
Carrio, A., Sampedro, C., Rodriguez-Ramos, A., & Campoy, P. (2017). A review of deep learning methods and applications for unmanned aerial Vehicles.
Journal of Sensors, 2, 1–13.
https://doi.org/10.1155/2017/3296874
Chen, T. B., & Soo, V. W. (1996). A comparative study of recurrent neural network architectures on learning temporal sequences. In
Proceedings of the IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE.
https://doi.org/10.1109/ICNN.1996.549199
Chovet, C., Lippert, M., Foucaut, J. M., & Keirsbulck, L. (2017). Dynamical aspects of a backward-facing step flow at large Reynolds numbers.
Experiments in Fluids,
58(11).
https://doi.org/10.1007/s00348-017-2444-5
Chovet, C., Lippert, M., Keirsbulck, L., & Foucaut, J. M. (2019). Unsteady behavior of a backward-facing step in forced flow.
Flow, Turbulence and Combustion,
102(1), 145–165.
https://doi.org/10.1007/s10494-018-9944-0
Fadla, F., Alizard, F., Keirsbulck, L., Robinet, J. C., Laval, J. P., Foucaut, J. M., Chovet, C., Alizard, F., & Lippert, M. (2019). Science Arts & Métiers (SAM) investigation of the dynamics in separated turbulent flow.
European Journal of Mechanics-B/Fluids, https://doi.org/10.1016/j.euromechflu.2019.01.006
Fadla, F., Graziani, A., Kerherve, F., Mathis, R., Lippert, M., Uystepruyst, D., & Keirsbulck, L. (2016). Electrochemical measurements for real-time stochastic reconstruction of large-scale dynamics of a separated flow.
Journal of Fluids Engineering, Transactions of the ASME,
138(12).
https://doi.org/10.1115/1.4034198
Fernández, S., Graves, A., & Schmidhuber, J. (2007). An application of recurrent neural networks to discriminative keyword spotting. In
Proceedings of the International Conference on Artificial Neural Networks (pp. 220–229). Berlin: Springer.
https://doi.org/10.1007/978-3-540-74695-9_23
Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.
Biological Cybernetics, 36(4), 193–202.
https://doi.org/10.1007/BF00344251
Giannopoulos, A., & Aider, J. L. (2020). Prediction of the dynamics of a backward-facing step flow using focused time-delay neural networks and particle image velocimetry data-sets.
International Journal of Heat and Fluid Flow,
82.
https://doi.org/10.1016/j.ijheatfluidflow.2019.108533
Gallagher, J. C., Boddhu, S. K., & Vigraham, S. (2005). A reconfigurable continuous time recurrent neural network for evolvable hardware applications. In
Proceedings of the 2005 IEEE Congress on Evolutionary Computation. Piscataway, NJ: IEEE.
http://doi.org/10.1109/EH.2005.5
Guo, Y., Liu, Y., Georgiou, T., & Lew, M. S. (2017). A review of semantic segmentation using deep neural networks.
International Journal of Multimedia Information Retrieval, 2, 1–7.
https://doi.org/10.1007/s13735-017-0141-z
He, T., & Droppo, J. (2016). Exploiting LSTM structure in deep neural networks for speech recognition. In
Proceedings ofthe IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 5445–5449). Piscataway, NJ: IEEE.
https://doi.org/10.1109/ICASSP.2016.7472718
Hsu, W. N., Zhang, Y., Lee, A., & Glass, J. (2016). Exploiting depth and highway connections in convolutional recurrent deep neural networks for speech recognition.
Cell, 50(1), 395–399.
https://doi.org/10.21437/Interspeech.2016-515
Jordan, M. (1986). Attractor dynamics and parallelism in a connectionist sequential machine. In
Proceedings of the Annual Conference of the Cognitive Science Society (pp.531–546). Piscataway, NJ: IEEE.
https://escholarship.org/uc/item/1fg2j76h
Kumar, K. R., & Selvaraj, M. (2023). Novel deep learning model for predicting wind velocity and power estimation in advanced INVELOX wind turbines.
Journal of Applied Fluid Mechanics,
16(6), 1256–1268.
https://doi.org/10.47176/jafm.16.06.1637
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
http://doi.org/10.1109/5.726791
Luo, D. (2019). Numerical simulation of turbulent flow over a backward facing step using partially averaged Navier-Stokes method.
Journal of Mechanical Science and Technology,
33(5), 2137–2148.
https://doi.org/10.1007/s12206-019-0416-9
Mehrez, Z., Bouterra, M., Cafsi, A. El, Belghith, A., & Le Quéré, P. (2010). Simulation of the periodically perturbed separated and reattaching flow over a backward-facing step.
Journal of Applied Fluid Mechanics, 3(2).
https://doi.org/10.36884/jafm.3.02.11883
Ötügen, M. V. (1991). Ex rimeas m l mds expansion ratio effects on the separated shear layer and reattachment downstream of a backward-facing step. Experiments in Fluids, 10.
Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., & Ward, R. (2015). Deep sentence embedding using the long short-term memory network: Analysis and application to information retrieval.
IEEE/ACM Transactions on Audio Speech and Language Processing, 24(4), 694–707.
https://doi.org/10.48550/arXiv.1502.06922
Probst, A., Radespiel, R., Wolf, C., Knopp, T., & Schwamborn, D. (2010).
A Comparison of Detached-Eddy Simulation and Reynolds-Stress Modelling Applied to the Flow over a Backward-Facing Step and an Airfoil at Stall.
https://doi.org/10.2514/6.2010-920
Qu, Z., Haghani, P., Weinstein, E., & Moreno, P. (2017). Syllable-based acoustic modeling with CTC-SMBR-LSTM. In
Proceedings of the IEEE Automatic Speech Recognition and Understanding Workshop (pp. 173–177). Piscataway, NJ: IEEE.
https://doi.org/10.1109/ASRU.2017.8268932
Rajabi, E., & Kavianpour, M. R. (2012). Intelligent prediction of turbulent flow over backward-facing step using direct numerical simulation data.
Engineering Applications of Computational Fluid Mechanics,
6(4), 490–503.
https://doi.org/10.1080/19942060.2012.11015437
Ranzato, M. A., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., & Chopra, S. (2014). Video (language) modeling: A baseline for generative models of natural-videos.
https://doi.org/10.48550/arXiv.1412.6604
Rawat, W., &Wang, Z. (2017). Deep convolutional neural Networks for image classification: A comprehensive review.
Neural Computation, 29(9), 1–10.
https://doi.org/10.1162/NECO_a_00990
Šarić, S., Jakirlić, S., & Tropea, C. (2005). A periodically perturbed backward-facing step flow by means of LES, des and T-RANS: An example of flow separation control.
Journal of Fluids Engineering, Transactions of the ASME,
127(5), 879–887.
https://doi.org/10.1115/1.2012502
Sharma, P., & Singh, A. (2017). Era of deep neural networks: A review. In
Proceedings ofthe 8th International Conference on Computing, Communication and Networking Technologies (pp. 1–5). Piscataway, NJ: IEEE.
https://doi.org/10.1109/ICCCNT.2017.8203938
Singh, A. P., Medida, S., & Duraisamy, K. (2017). Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils.
AIAA Journal,
55(7), 2215–2227.
https://doi.org/10.2514/1.J055595
Smirnov, E. M., Smirnovsky, A. A., Schur, N. A., Zaitsev, D. K., & Smirnov, P. E. (2018). Comparison of RANS and IDDES solutions for turbulent flow and heat transfer past a backward-facing step.
Heat and Mass Transfer,
54(8), 2231–2241.
https://doi.org/10.1007/s00231-017-2207-0
Sohankar, A., Khodadadi, M., Rangraz, E., & Alam, M. M. (2019). Control of flow and heat transfer over two inline square cylinders.
Physics of Fluids,
31(12).
https://doi.org/10.1063/1.5128751
Sujar Garrido, P., Moreau, É., Bonnet, J.-P., Benard, N., & Éric Moreau, M. (2014).
Active control of the turbulent flow downstream of a backward facing step with dielectric barrier discharge plasma actuators [Doctoral dissertation, Poitiers]
. https://api.semanticscholar.org/CorpusID:92790265
Talele, V., Mathew, V. K., Sonawane, N., Sanap, S., Chandak, A., & Nema, A. (2021). CFD and ANN approach to predict the flow pattern around the square and rectangular bluff body for high Reynolds number.
Materials Today: Proceedings,
47, 3177–3185.
https://doi.org/10.1016/j.matpr.2021.06.285
Weng, J. J., Ahuja, N., & Huang, T. S. (1993, May). Learning recognition and segmentation of 3D objects from 2D images. In
Proceedings of the Fourth International Conference on Computer Vision (pp. 121–128). Piscataway, NJ: IEEE.
https://doi.org/10.1109/iccv.1993.378228
Williams, R. J. (1989).
Complexity of exact gradient computation algorithms for recurrent neural networks (Technical Report NU-CCS-89-27). Boston: Northeastern University, College of Computer Science.
https://modeldb.science/citations/107088
Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and network architectures. Neural computation, 31(7), 1235-1270.
https://doi.org/10.1162/neco_a_01199