Aelaei, M., Karimian, S., & Ommi, F. (2019). Sensitivity analysis and optimization of delta wing design parameters using CFD-based response surface method.
Journal of Applied Fluid Mechanics,
12(6), 1885-1903.
https://doi.org/ 10.29252/JAFM.12.06.29706
Akhlaghi, M., Asadbeigi, M., & Ghafoorian, F. (2023). Novel CFD and DMST Dual method parametric study and optimization of a darrieus vertical axis wind turbine.
Journal of Applied Fluid Mechanics,
17(1), 205-218.
https://doi.org/10.47176/JAFM.17.1.1985
ANSYS FLUENT User’s Guide. ANSYS Inc, (2010).
Bai, C. J., Chen, P. W., & Wang, W. C. (2016). Aerodynamic design and analysis of a 10-kW horizontal-axis wind turbine for Tainan, Taiwan.
Clean Technologies and Environmental Policy,
18, 1151-1166.
https://doi.org/10.1007/s10098-016-1109-z
Bekkai, R., Laouar, R., & Mdouki, R. (2024). Design optimization of three‐dimensional geometry of a micro horizontal axis wind turbine blade using the response surface method.
PAMM, e202300248.
https://doi.org/10.1002/pamm.202300248
Ceyhan, O., Sezer-Uzol, N., & Tuncer, I. (2009).
Optimization of horizontal axis wind turbines by using BEM theory and genetic algorithm. Proceedings of the 5th Ankara International Aerospace Conference; METU: Ankara, Turkey. pp. 17–19.
http://aiac.ae.metu.edu.tr/ handle/11511/79495
Design Xplorer Documentation. ANSYS Inc, (2010).
Drela, M., & Aero, M. I. T. (2001). Astro: XFOIL 6.94 User Guide. Harold Youngren, Aerocraft.
Glauert, H. (1976). Airplane Propellers. In Division L of Aerodynamic Theory. Springer: Berlin/Heidelberg, Germany.
Hasan, M. M., El-Shahat, A., & Rahman, M. (2017). Performance investigation of three combined airfoils bladed small scale horizontal axis wind turbine by BEM and CFD analysis.
Journal of Power and Energy Engineering,
5(5), 1.
https://doi.org/10.4236/jpee.2017.55002
Huang, B., Usui, Y., Takaki, K., & Kanemoto, T. (2016). Optimization of blade setting angles of a counter‐rotating type horizontal‐axis tidal turbine using response surface methodology and experimental validation.
International Journal of Energy Research,
40(5), 610-617.
https://doi.org/10.1002/er.3383
Khaled, M., Ibrahim, M. M., Abdel Hamed, H. E., & AbdelGwad, A. F. (2019). Investigation of a small horizontal–axis wind turbine performance with and without winglet.
Energy, 115921.
https:// https://doi.org/10.1016/j.energy.2019.115921
Kim, B., Kim, W., Bae, S., Park, J., & Kim, M. (2011). Aerodynamic design and performance analysis of multi-MW class wind turbine blade.
Journal of Mechanical Science and Technology,
25(8), 1995–2002.
https://doi.org/10.1007/s12206-011-0521-x
Kim, B., Kim, W., Lee, S., Bae, S., & Lee, Y. (2013). Developement and verification of a performance based optimal design software for wind turbine blades.
Renewable Energy, 54, 166-172.
https://doi.org/10.1016/j.renene.2012.08.029
Lee, S. L., & Shin, S. (2020). Wind turbine blade optimal design considering multi-parameters and response surface method.
Energies,
13(7), 1639.
https://doi.org/10.3390/en13071639
Li, J. Y., Li, R., Gao, Y., & Huang, J. (2010). Aerodynamic optimization of wind turbine airfoils using response surface techniques.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
224(6), 827-838.
https://doi.org/10.1243/09576509JPE888
Marten, D., & Wendler, J. (2013). Qblade guidelines. Ver. 0.6, Technical University of (TU Berlin), Berlin, Germany.
Mauro, S., Lanzafame, R., & Messina, M. (2017). An insight into the rotational augmentation on HAWTs by means of CFD simulations-Part II: Post-processing and force analysis.
International Journal of Applied Engineering Research,
12(21), 10505-10529.
https://www.ripublication.com/ijaer17/ijaerv12n21_06.pdf
Pape, A. L., & Lecanu, J. (2004). 3D Navier–Stokes computations of a stall‐regulated wind turbine. Wind Energy:
An International Journal for Progress and Applications in Wind Power Conversion Technology,
7(4), 309-324.
https://doi.org/10.1002/we.129
Reddy, S. R., Dulikravich, G. S., Sobieczky, H., & Gonzalez, M. (2019). Bladelets—Winglets on blades of wind turbines: A multiobjective design optimization study.
Journal of Solar Energy Engineering,
141(6), 061003.
https://doi.org/10.1115/1.4043657
Sessarego, M., Feng, J., Ramos-García, N., & Horcas, S. G. (2020). Design optimization of a curved wind turbine blade using neural networks and an aero-elastic vortex method under turbulent inflow.
Renewable Energy,
146, 1524-1535.
https://doi.org/10.1016/j.renene.2019.07.046
Shin, P., & Kim, K. (2020).
Aerodynamic performance prediction of SG6043 airfoil for a horizontal-axis small wind turbine. Journal of Physics: Conference Series (Vol. 1452, No. 1, p. 012018). IOP Publishing.
https://doi.org/10.1088/1742-6596/1452/1/012018
Sørensen, J. N. (2016). General momentum theory for horizontal axis wind turbines (Vol. 4). New York: Springer.
Tabatabaeikia, S., Ghazali, N. N. B. N., Chong, W. T., Shahizare, B., Izadyar, N., Esmaeilzadeh, A., & Fazlizan, A. (2016). Computational and experimental optimization of the exhaust air energy recovery wind turbine generator.
Energy Conversion and Management,
126, 862-874.
https://doi.org/10.1016/j.enconman.2016.08.039
Taghinezhad, J., Alimardani, R., Masdari, M., & Mahmoodi, E. (2021). Performance optimization of a dual-rotor ducted wind turbine by using response surface method.
Energy Conversion and Management:
X,
12, 100120.
https://doi.org/10.1016/j.ecmx.2021.100120
Yang, Y., Xue, Y., Zhao, W., Yang, H., & Wu, C. (2024a). Aerodynamic shape optimization based on proper orthogonal decomposition reparameterization under small training sets.
Aerospace Science and Technology, 147, 109072.
https://doi.org/10.1016/j.ast.2024.109072
Yang, Y., Xue, Y., Zhao, W., Yao, S., Li, C., & Wu, C. (2024b). Fast flow field prediction of three-dimensional hypersonic vehicles using an improved Gaussian process regression algorithm.
Physics of Fluids, 36(1).
https://doi.org/10.1063/5.0183291
Yang, Y., Zhao, W., Xue, Y., Yang, H., & Wu, C. (2023). Improved automatic kernel construction for Gaussian process regression in small sample learning for predicting lift body aerodynamic performance.
Physics of Fluids, 35(6).
https://doi.org/10.1063/5.0153970
Zhou, L., Wang, Z., & Shi, J. (2020). Optimization design of the integral inertial particle separator based on response surface method.
Journal of Applied Fluid Mechanics,
13(1), 133-145.
https://doi.org/10.29252/JAFM.13.01.30186